
a.
ESD ACCESSION LIST

^ o
-i o

+J
,9 <"
2}^

ESD-TR-66-113
Vol. 3

T
»«£

©Ft.
ESTI Call No.

Copy No.
AL ^ ft* /;

,-Z.

sc\^c' J^,*u s, JZtt

A METHOD FOR THE EVALUATION OF SOFTWARE:

EXECUTIVE, OPERATING OR MONITOR SYSTEMS

of /
^4TR--lS7cys

Vol. 3

SEPTEMBER 1967

A. E. Budd

I*

iii^"Ni

Prepared for

EDP EQUIPMENT OFFICE

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L, G. Hanscom Field, Bedford, Massachusetts

This document has been approved for public

release and sale; its distribution i s un-

limited.

Project 8510
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(628)-5165

AT - L

When US Government drawings, specifications, or
other data are used for any purpose other than a
definitely related government procurement operation,
the government thereby incurs no responsibility
nor any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in
any way supplied the said drawings, specifications,
or other data is not to be regarded by implication
or otherwise, as in any manner licensing the holder
or any other person or corporation, or conveying
any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related
thereto.

Do not return this copy. Retain or destroy.

ESD-TR -66-113
Vol. 3

MTR-197
Vol. 3

A METHOD FOR THE EVALUATION OF SOFTWARE:

EXECUTIVE, OPERATING OR MONITOR SYSTEMS

SEPTEMBER 1967

A. E. Budd

Prepared for

EDP EQUIPMENT OFFICE

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

This document has been approved for pu blic

release and sale; its distribution i s un-

limited.

V ffl

Project 8510
Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract AF19(628>5165

FOREWORD

The work reported in this document was conducted by The MITRE
Corporation for the EDP Equipment Office, Electronic Systems Division,
Air Force Systems Command, L. G. Hanscom Field, Bedford, Massachu-
setts, under Contract AF 19(62 8)-5165.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

P. STEFFES
Lionel, USAF

Chief, EDP Equipment Office

11

ABSTRACT

This report contains features of executive, operating or monitor sys-
tems considered important for evaluation and comparative analysis. These
features are identified in a form expressly for inclusion in the Three Step
Method for Software Evaluation (Volume 1 of this series) under Category TWO:
Executive, Operating or Monitor Systems. Included in this volume is a com-
posite list of functions contained in current executive systems. These func-
tions provide the basis for a standard approach to the software category of
executive systems particularly needed for evaluation and comparative
analysis.

111

TABLE OF CONTENTS

SECTION I

SECTION II

SECTION in

SECTION IV

Page
INTRODUCTION 1

FUNCTIONAL DIVISIONS 3
BENCHMARK CONSIDERATIONS 5

EXECUTIVE SYSTEM FUNCTIONS 6
JOB AND/OR TASK SCHEDULING 6
I/O ALLOCATION, MONITORING AND CONTROL 10
USER AND SYSTEM STORAGE ALLOCATION 12
LIBRARY MANIPULATION AND MAINTENANCE 15
EDITING OF USER AND SYSTEM PROGRAMS 16
FACILITY AND USER TIME ACCOUNTING 18
GENERATING AND UPDATING THE MASTER

SYSTEM 19
OPERATOR AND OFF-LINE COMMUNICATION 20
ERROR RECOGNITION AND RECOVERY 21
DOCUMENTATION 23

MATRDC OF FEATURES 24
JOB AND/OR TASK SCHEDULING 25
I/O ALLOCATION, MONITORING AND CONTROL 28
USER AND SYSTEM STORAGE ALLOCATION 30
LIBRARY MANIPULATION AND MAINTENANCE 33
EDITING OF USER AND SYSTEM PROGRAMS 35
FACILITY AND USER TIME ACCOUNTING 37
GENERATING AND UPDATING THE MASTER

SYSTEM 39
OPERATOR AND OFF-LINE COMMUNICATION 40
ERROR RECOGNITION AND RECOVERY 41
DOCUMENTATION 43

DESCRIPTION OF EXECUTIVE, OPERATING OR
MONITOR SYSTEM FEATURES 45

JOB AND/OR TASK SCHEDULING 45
I/O ALLOCATION, MONITORING AND CONTROL 52
USER AND SYSTEM STORAGE ALLOCATION 57
LIBRARY MANIPULATION AND MAINTENANCE 62
EDITING OF USER AND SYSTEM PROGRAMS 65
FACILITY AND USER TIME ACCOUNTING 69
GENERATING AND UPDATING THE MASTER

SYSTEM 72
OPERATOR AND OFF-LINE COMMUNICATION 74

TABLE OF CONTENTS (Continued)

Page
ERROR RECOGNITION AND SYSTEM RECOVERY 76
DOCUMENTATION 79

SECTION V QUESTIONNAIRE 81
INTRODUCTION 81
RESPONDENT* S NOTE 81
FUNCTIONAL DWISIONS 81

VI

SECTION I

INTRODUCTION

Generally speaking an operating system is that portion of a
software package which is at the highest level of control. Its parts
include a monitoring portion which provides a simplified interface for
the user and the input/output subsystems; and a scheduling function
to provide user programs with first-in/first-out compilation and/or
execution of his jobs or tasks. In some instances, more complicated
priority oriented designations are used instead of the commonly used
first-in/first-out scheme providing different levels of priority.
Other portions of the operating system include editing capabilities
for updating and maintaining master system tapes and control of library
routines for general utility functions and other commonly used programs,
Functions associated with these systems include manual operations,
such as tape and card changing, in addition to those performed within
che programmed portions.

In order to relate the user's requirements to the operating
system, each computing system has defined a language unique to its own
capabilities and limitations. Each language is sufficient for its own
needs and has been designed to best utilize the features of one par-
ticular computing system. Where one system provides for instructions
on control cards only, another allows console intervention as well as
control card instructions. Where one system provides library routines
at compile time, another provides them at program load and execute
time. Where one has provision for compile, compile and execute, and
execute, another system will accept compile and load in addition to
these. Where one system uses the letter designation "XEQ" to mean
load and execute a binary program, another uses "LOAD" to mean the
same thing. Card formats differ both in relative positions used and
in the fact that one has a fixed format while another has a variable
one. In any event, a series of instructions acceptable to one com-
puting system is unacceptable and often meaningless to others. At the
present time, "machine independent languages" do not include operating
systems by any stretch of the imagination.

Considerable emphasis is currently being placed on operating,
executive or monitor systems by EDP equipment users, manufacturers and
software development groups. These systems were reasonably simple when
first introduced but have grown much more complex due to increased
hardware complexities such as simultaneous input/output channels, addi-
tion of one or more central processing units having access to the main
memory, and others. One important reason for this current emphasis is
that executive systems are highly machine dependent. Each executive
system was designed around a particular machine and only produces or
implements those iunctions which the hardware does not perform. If
some feature of the hardware does not allow one to implement the kind
of scheduling algorithm that is needed, then the executive system

designer ends up putting this in his executive system by way of soft-
ware. Another reason is that no standards exist. In the compiler area,
there are known techniques for building compilers - it is relatively
easy to find out what they are and to find out how to implement these
particular techniques. This is not true in the executive system area.
If one is trying to implement a scheduling algorithm, he finds out what
hardware features are available and uses those in conjunction with
whatever else he feels is necessary from his own knowledge in order to
implement that particular scheduling algorithm. A standard approach
to an executive system is what is needed here, rather than a standard
executive system. Executive systems are highly dependent on the partic-
ular machine for which they were designed and therefore, it is meaning-
less to try to define a standard system. However, it is certainly
possible to define a standard approach to executive systems for pur-
poses of equipment evaluation at least.

Multiprocessing and multiprogramming hardware requires an exec-
utive framework in order to perform effectively. You must have some
function at the highest level of control that can assign particular
hardware components to perform requested functions. This requirement
is due to the fact that you have several input-output channels opera-
ting simultaneously or several central processing units with the capa-
bility of operating simultaneously.

Many problems are encountered with timing any kind of equipment
demonstration, either a benchmark program written in some compiler lan-
guage, machine language, or a benchmark such as reading-in data from
tape or from a real-time device. All the general timing problems
involve investigation of the executive system functions. In some sys-
tems, for example, library routines needed within a program are read-in
during the compilation phase. In others, these routines are read-in to
primary storage at the same time the program is read-in for execution.
In still other systems, library routines are read-in during program
execution only as they are needed. This means that some systems will
have compilation times which include library routine read-in while
others will have the time required for reading library routines included
in execution timing. The difficulty arises from the fact that the user
is not aware of these differences unless the executive system receives
sufficient investigation. Investigation of the executive system's
features and functions should identify the differences between vendor's
computing systems. It is important to find a point in time at which
the executive system has stopped doing something, or the compilation
process has been completed, execution has been completed, or tape being
read-in has stopped, and it is in the executive system that these
points in time occur. At any rate, a study of the difficulties in
timing end up to be a study of executive system functions.

Many of the current executive functions were formerly performed
by compilers. In the past, compilers had a series of cards which were

input and allowed things such as tape assignments, compile and go
statements, and others. These functions formerly performed by compilers
are now separated from the compiler and performed by the executive sys-
tem. Most vendors have a large percentage of programmers working on
executive systems for different computers or on different computer con-
figurations. Most users end up having to have one or more system pro-
grammers to maintain and make small changes, or update the latest
changes from the vendor, to the executive system. This is a very time-
consuming type of thing. In some cases, Air Force installations have
had to produce whole new executive systems which is a difficult and
time-consuming thing to do.

FUNCTIONAL DIVISIONS

This report contains the important functions and features of
-•xecutive, operating or monitor systems. These features are a composite
from which the evaluator, in conjunction with the user, may select pro-
viding they are consistent with the system requirements. The evaluator
would first select those features which are important to the user. This
list would be part of the basic system requirements of the evaluation
team in which one vendor's answer or result for one feature would form
one entry. This would provide a convenient method of comparing the
features of one vendor as well as comparing the vendor's response to
each feature.

The evaluator must work with the user to determine his specific
needs. For instance, the user may require immediate response by the sys-
tem to certain real-time data inputs requiring priority interruption of
the program being executed. On the other hand, another installation
may require a strict first-come, first-served scheme since everyone has
about the same priority but in addition require a complex scheme for
communicating with other off-line and on-line computers. Whichever
the case may be, these needs must be determined through the user so
that the resulting system selection will meet his specified requirements,

The list of functions in SECTION TWO is a composite of those
performed in various operating systems now being planned, being imple-
mented or already operational. The emphasis has been centered on the
function which is or will be performed by the system rather than the
method or technique of implementing its execution.

Some of the items have been named by computer manufacturers'
software groups or independent software groups as functions contained
within some already available compiler, assembly program or other dis-
tinguishable piece of software. This confusion has arisen because one
or more of the functions in question were originally programmed into
that software unit. When the software unit was produced, no operating
system existed as a separate entity and therefore the function was

included for convenience. However, as the concept of executive control
has developed, these functions have switched their alliance to operating
systems. At any rate, only those functions which pertain to executive
or operating systems are included.

The features are presented in three sections. The first of
these, SECTION THREE, contains summary titles of each feature in the
matrix form required for the three step procedure described in Volume
1 of this series. The next section, SECTION FOUR, contains a descrip-
tion of what is meant by each summary titled feature, which measures
of software capability are affected by this feature and, where neces-
sary, further explanation indicating what aspects are especially useful
to an installation or specific application. The last section, SECTION
FIVE, contains many of the questions appearing in SECTION FOUR and
additional questions to make up a composite questionnaire from which
evaluators may select from for inclusion in proposal requests or verbal
briefings. The questions are presented separately for convenience and
will assist the evaluator in obtaining appropriate information for
feature evaluation.

It should be remembered that these features and questions are
a composite and therefore, only those features or questions deemed
important relative to the specific application or installation under
consideration should be selected.

Each section including the executive functions section is pre-
sented in the following ten functional divisions:

1. Job and/or Task Scheduling - relating to the capability
of the system to schedule jobs, programs or tasks by
suitable assignment of equipment components.

2. I/O Allocation, Monitoring and Control - concerns the
allocation of input/output channels and devices, as well
as monitoring their status and effecting their control.

3. User and System Storage Allocation - concerns the methods
and techniques of allocating both primary and secondary
storage; and includes the interface with jobs, programs
and tasks.

4. Library Manipulation and Maintenance - deals with sub-
routines, subprograms or portions of the programming
system whose purpose in being is solely to provide main-
tenance of commonly used library routines in addition
to the actual manipulation of them.

5. Editing of User and System Programs - primarily concerns
reporting of program, software and machine errors as well
as debugging facilities for both the user and the system
programs.

4

6 Facility and User Time Accounting - the accounting of
user and system program execution times, and of individ-
ual component use times.

7. Generating and Updating the Master System - updating and
adding new software components to the master system.

8. Operator and Off-Line Communication - oriented to the
content and makeup of messages and directions to off-
line computers and human operators.

9. Error Recognition and Recovery - features and functions
concerning errors in the central processor, input/output
channels and devices, including related system recovery
procedures.

10. Documentation - relates to manuals and listings produced
for the user-programmer and the system programmer.

BENCHMARK CONSIDERATION

In order to remain unbiased with respect to computing system
vendors, benchmark programs should, ideally, be written in machine
independent languages. This is not possible for executive systems
since their input languages are highly dependent on specific features
of the hardware. However, if the major and minor functions of the
category of executive systems were used as a machine independent
language, then the evaluation process could use these functional defi-
nitions for timing and equipment demonstrations, as well as remain
unbiased with respect to vendors.

One of the major problems with current executive systems con-
cerns the amount of computer time used in execution of the individual
functions. For instance, one system may contain all the features and
functions required by the evaluator-user team but be so inefficient in
implementation that it causes the overall computing system to fail the
timing requirements. On the other end of the scale, a different system
might meet the timing requirements but fail to provide the functions
and features required for adequate operation of the user's installation.
The evaluation process must provide a realistic investigation so that
an adequate balance may be reached between the functions required by
the user and the demonstration of these functions within reasonable
timing limits.

It is with these considerations in mind that SECTION TWO,
containing the major and minor functions of executive systems, is
presented to assist evaluacors by providing a standard approach to the
category of executive systems.

SECTION II

EXECUTIVE SYSTEM FUNCTIONS

A comprehensive list of automatic operating system functions
which cover a broad range of possibilities is described below. Wher-
ever applicable, an explanation is given describing problems concern-
ing implementation of the particular function since one or more spe-
cial techniques may have been used. The machine dependence of certain
selected functions is discussed; that is, is this function one which
has been designed and implemented relative to one specific hardware
feature found on only one machine? In contrast to this, there are
subsets of functions which are more machine independent and are fre-
quently needed whenever an operating system is implemented.

In any list of functions it is very difficult to exclude the
interdependencies within any one operating system design. Many of the
following functions are integrated by the designer into one design and
done so in a manner which tends to emphasize similar characteristics
of each function, combined in a way that will conserve primary storage
space and execution time, However, in this report the goal is to iso-
late each function so that its description concerns the characteristics
of that function only. In some cases, it may seem reasonable to assume
a particular function should fall into a different general functional
category than was selected. It should be realized that the one selected
provided the primary concern and therefore could appear in another
category only in a secondary way.

Nine major aggregates of functions have been identified and each
of the executive or automatic operating system functions has been suit-
ably described and integrated within one of these major aggregates.

JOB AND/OR TASK SCHEDULING

This particular major function is present in all operating sys-
tems, to some degree, in one form or another. The particular section
of the operating system which handles priority, either on a first-come,
first-served basis, or by some generalized scheme which includes first-
come, first-served as a special case. Definitions of the term "job"
and the term "task" vary from system to system, However, in this report
we describe a job as one complete set of coding, no matter what lan-
guage it is written in, which includes its input and output as one unit.
Any one programmer might submit many jobs but any one of those jobs is
a complete entity in itself containing all the required processes needed

to perform a meaningful and complete function. By a task is meant one
of the processes. For instance, reading in input from one tape; or
reading in one card from a card reader; or the calculation of a square
root; or printing out one line would be considered a task. It takes
many tasks to make up one job. Included in this section are those
functions which relate to priority scheduling of either the jobs or
tasks, or some appropriate combination of both.

Compilation. Assembly. Loading. Execution. Test Execution and/or
Appropriate Combinations of User Programs

The operating system provides a framework in which the user
may request any desired sequence of compiling, loading, execution, etc.
Portions of the assembler or compiler are ready or executed at the
appropriate time, the compiled or assembled program and data are placed
suitably in the machine for test or complete execution. A smooth and
efficient transition from one program or job to the next is one of the
most important functions it can perform. This function is independent
of any specific machine and is characterized by the fact that all rele-
vant operating systems provide it and all EDP users require it to some
degree.

Running of Several Programs Serially or in Parallel

Each operating system has its own definitions, flexibilities,
input language, etc. A program may really be an entire programmed sys-
tem, in one case, or a very particular and commonly used small routine
with no input/output requirements in another case. To what degree pro-
grams, systems or routines may be operated simultaneously depends on
the objectives of the designer as well as the capabilities of the par-
ticular machine. At any rate, a structure must be provided with limi-
tations and flexibilities which allow several programs or a continuous
stream of programs to run without interruption. This may be performed
by running these programs in parallel or simply in some serial fashion.
Relatively little programming development work has been done for paral-
lel operations and, as a result, paper proposals must be analyzed very
closely.

Run-to-Run Program Parameter Changes or Modifications

Once a program is checked out and considered to be ready for
production, the user may require several such runs, each with one or
more of its input parameters changed. In fact, it may be convenient to
check out a program (after the initial or first phase of checkout) by
setting up a series of runs changing one or more parameters at a time
to establish or verify its checked out status. Each operating system
requires different >-jles or techniques for executing these runs.

Inter- and/or Intra-Program Task Execution in Parallel

In systems having a multiprocessing capability a flexibility
is sometimes provided the user-programmer to submit jobs or tasks in
parallel; that is, tasks may be executed within a certain job in paral-
lel which would be considered either multiprogramming or multiprocessing.
The function of the operating system is to provide the environment such
that tasks may be executed in parallel within a program providing, of
course, the hardware capability is present. Important in this area is
what limitations have been imposed and for what reasons. For example,
is it possible within the user program to direct the operating system
to begin reading in or reading out certain data portions in advance of
their actual need. Or is it possible to request that a certain sub-
routine, such as a square root routine, might be executed using a
different central processor at this time even though it would not be
needed until later; thus providing the user with a facility that could
make his overall program run faster, Tnis particular function has many
ramifications and in some cases has been so limited that multiprocessing
was impossible even when the hardware capability was present. This
function depends on certain unique hardware features not found in all
machines,

Controlling Use of Common Subroutines (i.e. Reentrant Coding Routines)
by Several Central Processing Units

In a multiprocessing environment more than one central
processing unit may require operation of the same subroutine. The
operating system must ensure each of these central processors a correct
copy of the subroutine as well as providing each processor with its own
temporary storage. The framework for controlling this function should
be flexible enough to handle future central processing unit additions
and associated equipment changes,

Monitoring and Control of Utility and/or User Program Timed Requests

Continuous monitoring is required, in some cases, to pro-
vide the user with the capability of instructing the computing system
to perform a particular function at a certain pre-specified time. In
other cases a timed interrupt can be programmed to provide this moni-
toring. The requests could be relative to certain real-time devices,
or to a specific standard I/O requirement, or even to a scheduled main-
tenance type request. Within the programming system, requests for
certain I/O data transfers could be controlled in much the same way.
In most systems this monitoring and control must be done by a previously
defined and agreed upon schedule of priorities.

Automatic Program. Job, or Task Scheduling Control

A programmed request may necessitate reading in a program
from the user's own library of programs. This user may have a variety
of different programs which upon his request are compiled or executed
within his current program, job, or task. This particular function is
much more dependent on the design objectives of the entire programming
system than it is on the particular machine used.

Monitoring of User and Program Priorities

An initial request containing a low priority, in some sys-
tems, would get this priority raised providing certain prearranged
units of time have passed without the program being executed. These
priorities must be monitored then for all programs, both active and
queued. This particular function may depend on another function of
scheduling control if the scheme used for scheduling and priority is
considered complicated. This monitoring function is dependent on both
hardware features and operating system design objectives.

Automatic Rescheduling and System Reorganization for Priority Programs

In the event of high priority requests, the operating
system may be required to perform component rescheduling and rearranging
of the entire computing system status in order to provide an environ-
ment for the execution of the high priority program. It could happen
that with suitable rescheduling and reorganizing of the system status
the high priority program may operate with only minor interruption to
the program which it interrupted. This function is dependent on the
machine hardware features and on the design objectives of the operating
system.

Generation and Checking of Program and Data Identification

In order that the correct priority scheduling of jobs and
tasks may be done, the operating system must check the programmer's
identification cards or records, and suitably generate any internal
communication needs for other central processing units as well as
establish logical switches so that appropriate monitoring of the entire
computing system may continue. In addition, many installations require
project numbers and insist on formatted or coded priority requests to
ensure the accurate implementation of a particular priority standard.
This is a primary scheduling function and is essentially machine
independent.

Maintenance of Task. Program and/or Job Queue Tables

The scheduling of jobs, tasks and programs will require
bookkeeping of certain identification data relative to each. This is
dependent on the level of complication of the priority scheme used.
It is the scheduling function that keeps these tables updated so that
the proper sequence of programs may be executed.

I/O ALLOCATION, MONITORING AND CONTROL

Within an operating system there are portions of the program
which relate to allocating input/output devices and channels as well
as monitoring and controlling the devices and channels. Naturally
some machines require more or less of this monitoring and control than
others do. In some cases symbolic addressing of I/O devices and chan-
nels provides more flexibility and less machine dependence for the
individual programs. Under this major function are listed all of
those minor functions which relate to allocation, monitoring and con-
trol of I/O, but excluding the functions relating to storage alloca-
tion since they will be integrated under another major function.

Future Additions of Standard I/O Equipment

Flexibility is often needed in the design of those systems
having a symbolic I/O addressing capability, so that any particular
installation which needs additional tapes, discs, drums, printers,
etc., in the future should be allowed this addition with only a small
modification to the operating system. It is common to start with min-
imum I/O and wait until more units are actually needed before they are
purchased or r- ited

Initiation and Control of Program Delays on I/O Requirements

In some cases, machine language I/O instructions are used
by the operating system but unknown, for the most part, to the user
program, Delaying certain operations until a channel is available or
until a rewind is completed on a magnetic tape are functions executed
within the operating system,, There is a necessary balance here between
savings in time and checkout problems for the programmer, on the one
hand, and, on the other hand, necessary flexibility in the use of the
I/O equipment,, This function, by necessity, is completely machine
dependent.

10

Addition of Special I/O and/or Communication Equipment

Installations which at the beginning have special I/O equip-
ment such as certain real-time devices, or plan in the future to add
this type of equipment, do well to have a flexibility built into the
operating system such that these additions may be made expeditiously.
If the framework of the operating system has limitations not conducive
to future, predicted requirements, then a very large portion of the
operating system may have to be modified when that equipment is added.
This equipment may include different types of sensors or various types
of long-line communication equipment. The system specification may
require sufficient flexibility to allow utilization of this type of
facility addition.

Future Modification of Simultaneous Channel Capability

Sufficient flexibility may be required to provide for either
future increases or decreases in the number of simultaneous channels
used. Increasing the number of channels available in a system, result-
ing in more flexibility for allocating and controlling I/O equipment,
may provide savings not realizable at the time of installation but
rather may be appropriate for future considerations. This capability
should be contained in the operating system at the time of hardware
selection. Each operating system would implement this function to best
suit the equipment used.

Conversion of User Symbolic I/O Assignments to Actual Channel and
Unit Numbers

In a system which provides the capability of assigning I/O
equipments with symbols, the operating system must effect the conver-
sion to channel and unit numbers. This function is essentially inde-
pendent of the machine since it is required by any system allowing sym-
bolic assignments of I/O equipments; however, in some cases, the con-
version is done by using a unique hardware feature.

Monitoring and Updating of Entire Computing System Status

The operating system must know, at any time, the status of
all components in order to effectively and efficiently schedule pro-
grams, jobs, or tasks. Some operating systems contain tables providing
an environment for this updating and monitoring. The primary concern
is the problem involved with allocation and control of I/O equipment;
although scheduling jobs is another major category of some importance
to this function.

11

Input/Output Equipment Scheduling, and Interrupt and Chanrtel Monitoring

One function of the operating system is to honor requests
from jser programs in the use of scratch tapes, input data tapes,
areas of secondary and primary storage for temporary use. This sched-
ule is initiated so that smootn program-to program or job-to-job con-
trol transfers may be efficient and smooth. The algorithm for effect-
ing this equipment scheduling must provide for smooth and efficient
operation It is within this portion of the program handling the
scheduling that monitoring of appropriate and associated interrupts is
done since interrupts that convey the completion of an I/O transfer
may affect this schedule, This function is highly machine dependent.

Queuing Messages. Programs and Data From and to Remote Consoles

Remote consoles require immediate attention Incoming data,
messages and program:, require trie operating system to react in some
way so that appropriate storage of this data, message or program may
be saved for some time later on when execution may take place, This
is mainly a problem of I/0 allocation, monitoring and control with
scheduling and storage allocation important but secondary functions.
This function depends on the particular hardware installation and can
be aided bv hardware features to effect efficiency.

USER AND SYSTEM STORAGE ALLOCATION

Certain subroutines and portions of the executive system are
dedicated to avocation of storage for the user program; that is, the
user may need blocks of core, blocks of disc, drum, etc. Those minor
functions which assist in storage allocation for both the user and for
the operating system storage allocation requirements or compiler stor-
age allocation reqjirements are listed within this major function.

Manipulation and Activation of Program Overlay?

Any user programmer must segment his problem (if segmenta-
tion is indeed required) according to a prearranged framework. Bound-
aries and limits to any set scheme are defined by the method selected
for implementation The operating system provides the impetus for
effecting the movement of these segments in addition to establishing
specific characteristics for its use. In most cases, this function
would depend more on the design concept than the particular equipments

used

12

Selection of Combinations of Debugging Operations

Provision for the selection of a series of debugging opera-
tions as an aid to check-out is often present in the basic structure.
A user programmer would be able to request stopping operation at some
point so that a memory dump could be taken, a part of the program
traced or any combination of these in a suitable series. This is com-
monly called part of the executive function since a long string of
these requests may be handled, by the operating system, as a single
request from the user. The important thing in this function is how it
is implemented, that is, how flexible is it for the programmer's use.
The implementation of this function is also concerned with how the
storage is allocated both in working and secondary storage.

Running Foreground and/or Background Jobs or Tasks for Multiple-
Access Systems

In some installations it is a requirement to be able to run
jobs presented for the most part on-line. However, jobs which take
several hours to run might require a capability of doing the longer
jobs whenever there is no on-line job to be run; and then when an on-
line request comes in, interrupting the longer job as necessary. This
particular function is dependent on the machine; however, the require-
ments on the user-programmer could easily be independent of any one
machine. Storage allocation is the primary concern for this function,
although the scheduling of jobs or tasks including I/O equipments is
also important.

Allocation of Primary and Secondary Storage

One particular method or technique must be selected to
allocate all or portions of the storage devices associated with a com-
puting system. Many operating systems have selected a technique to
manipulate relocatable code produced by the compiler or assembler.
Absolute memory addresses are assigned at load time in other systems,
providing storage allocation in a rather limited way. Does the system
simply break various storage devices into small segments and allocate
one or more upon request? How may the user or programmer reconstruct
his particular program operation in the environment of relocatable code
if that is used? Dynamic allocation of storage is often much more
complicated than a static allocation scheme and is much more difficult
to isolate as a function.

Job, Program and Task Loading and Component Initialization

The actual program used to read in the job, program or task
is often included in the priority scheduling. Component initialization,
such as reading identification labels on magnetic tapes, is performed

13

within the operating system in some cases. This particular function
depends more on the design of the operating system features than on
the particular machine used. The primary problem of implementing this
function concerns storage allocation for loading programs and data.

Memory Buffer Area Determination for I/O Assignments

When certain user requests occur, the operating system must
determine the memory buffer area needed. The size of this memory buf-
fer area will depend on how manv other programs are presently using
I/O equipments. The operating System could read in many records at
one time into this memory buffer or read only one record at a time.
Whichever is done depends on user request, computing system status,
memory area available, the machine configuration such as number of
simultaneous channels available, etc., and is an important storage
allocation function.

Reading and Storing Job Segments of Program and Data on Secondary
Storage Media

Portions of the operating system are produced strictly for
reading and storing segments of the user program job and the related
data on whatever disc, drum or other secondary storage media is avail-
able. These two processes may be done in conjunction with reading and
storing other library and general utility routines. This function is
machine dependent and additionally depends on how job segmenting is
implemented as a technique. The primary concern is within the storage
allocation category.

Relocation of Program Segments and/or Data Arrays and Tables
Required for Priority Program Requests

In the event of a high priority request the operating sys-
tem must assess the computing system status indicators to determine if
data arrays or program segments must be relocated. The operating sys-
tem must then indeed relocate any segments or data arrays in order to
provide the high priority program with the needed components. The
function of priority scheduling must indeed request or communicate with
the storage allocation function in order to both determine what storage
is available and to obtain the required storage. This function then
depends on three major areas. It depends mainly on the function of
storage allocation but also, to a lesser degree, on the priority sched-
uling of jobs and tasks, and on the library manipulation and maintenance
functions.

14

Monitoring Requests and Returns of Primary and Secondary Storage Blocks

In an environment where the operating system controls stor-
age allocation, user requests for additional storage or returned allo-
cations must be honored and suitably recorded. Tables may be updated
whenever a request is made which provide a current status of the pri-
mary and secondary storage allocations made. This function depends on
the allocation scheme or technique used more than on a specific hard-
ware feature. However, some modern equipments provide unique features
which may make a particular scheme highly machine dependent.

LIBRARY MANIPULATION AND MAINTENANCE

Any subroutines, subprograms or portions of the programming sys-
tem which provide maintenance of library routines for purposes of up-
dating those now in existence, adding new ones, or deleting old ones
are included here. Also the manipulation of the library whenever com-
pilation or execution requests by user programs are recognized is
included under this major function.

Maintenance (Scheduled and Npnscheduled) Program Operations

Provision is often available for the operation of certain
maintenance type programs to ensure a level of reliability. The inclu-
sion of these either scheduled or nonscheduled (the nonscheduled being
larger and much more complete) allows maintenance personnel to submit
jobs and/or tasks as part of the normal facility operations.

Simplified Access to Compilers. Assemblers. Library Routines and Other

Languages

An uncomplicated, yet flexible, method for user programmers
to utilize available compilers, assemblers, library routines, etc., is
hard to attain. However, the framework is needed, for some applica-
tions, to appropriately mix statements in compiler language with
machine language and certain other routines to obtain efficient and
flexible programmed systems. Many systems provide only one program
language to be written in at any one time. This function is indepen-
dent of unique hardware features.

Instruction Linkage Between Compilers. Macro-Assemblers. Assemblers.
Report Generators. Sort Routines. Etc.

The operating system must set up the appropriate instruction
linkage for the user program so that any of the utility programs or

15

program systems may be integrated and manipulated under its jurisdic-
tion. Many operating systems do not provide the flexibility of this
instruction linkage and the linking must be done by the user program-
mer. In some cases, this linkage will initiate reading of the appro-
priate utility routine into core storage. In others, it will effect
a transfer to that utility routine only. At any rate, this function
will depend to a large extent on implementation techniques adapted
for library maintenance and/or its manipulation.

Reading and Transfer of Control to System Utility Routines

Should a memory dump, or a sorting operation, or a report
generation, or other request be made by the user, the operating system
must perform read in of this particular routine plus provide the con-
trol transfers botr to and from the operating system. How this par-
ticular function is implemented depends on how the instruction linkage
between compilers, assemblers, etc., is implemented. In many cases,
dependence is on t' e objectives of the software design and not on
unique hardware features.

Substitution and Execution of Linkage for Program Segmentation

The act of substituting appropriate instruction linkages,
including the execution of chis linkage, is performed by the operating
system so that problems of program segmentation do not require user
coding. The user' programmer must be cognizant of the program segment
but the operating system can ensure the presence of required input or
output data tables or arrays for the appropriate segment. This par-
ticular function is more dependent on tie type of language used than
on t're particular machine, however, there are hardware features which
make this particular function easy to implement.

EDITING OF USER AND SYSTEM PROGRAMS

The executive system very often provides notes for the user
so that he may reconstruct what happened during the operation of his
program or job. Also these notes are provided to programming system
communication functions, that is, communication needed between, say,
the compiler, the operating system or any utility programs. This
depends on how the particular system was designed and implemented.

Substitution and Deletion of Coding for Breakpoint, Snapshot or Memory
Dumps and/or Tracing Routines

Small groups of instructions or code are placed at appro-
priate points in the user s program at his request, so that memory

16

dumps may be obtained at the required time, or tracing routines may
operate on a prespecified portion of the pwogram when certain pre-
arranged conditions are satisfied. The instruction group may be as
small as a single transfer instruction for snapshots, or sufficiently
large to fill unused core storage with special instructions for system
recovery during debugging runs. Substitution and deletion of this code
by the operating system provides the framework necessary for efficient
program checkout. Usually, however, manipulation of the input/output
channels and devices are not provided for in the debugging part of the
operating system. Some tracing routines, for instance, have provided
no operations at all relative to I/O manipulations.

Integration of Programming Patches

After a programmer has made one or more runs on the computer
Li an attempt to check out his program, he often wants to add patches
or small groups of instructions which will correct certain errors or
omissions. Sometimes this is done at the source language level only
and other times systems have the flexibility of doing this at the
machine language level. If integrating these programming patches is
not possible at the machine language level, then entire systems may
have to be recompiled whereas if a small machine language patch could
be made it could be run and tested without that recompilation. In
some cases recompilation involves large amounts of machine time for
both on and off-line computers.

Generation of Output Listings for Programmer Post-System Analysis

The executive, system must make up certain printed listings
useful to the programmer for analyzing a program or program system
after execution. In many cases, even though each line has been
generated at a different time during the execution, the operating
system provides the programmer with a contiguous listing relative to
the sequence of events occurring during the operation. In some
cases each line is an English description of an event which occurred,
but in other cases it is simply a number which refers the programmer
to a list of possible output events in the operating system documen-
tation. Oftentimes a compiler or some other unit of software produces
this type of message requiring the operating system to suitably inte-
grate it into the output listing. This function is essentially inde-
pendent of any particular machine hardware features.

Formatting and Recording of Machine Errors^

Editing for the user and programming maintenance personnel
must provide a record of the particular machine errors which have

17

occurred during operation. In some cases these particular machine
error descriptions are recorded with the job output. In others, the
output includes simply a number used as reference into a table in the
operating system documentation. This particular function is indepen-
dent of the machine.

Monitoring and Control of Out-of-Range Data Quantities and Arithmetic
Operation Violations

The executive system provides the flexibility of monitoring
and controlling data calculations at prespecified times so that any
quantities not within the predicted range may be tagged and a suitable
output message generated and recorded. Also included are arithmetic
operation violations not detected by the hardware. This type of
function is, although performed by the operating system, defined and
initiated by the user-programmer. This function will depend, for its
implementation, on what hardware features are provided for rronitoring
data quantities and arithmetic operations and, in addition, on what
hardware features are provided so that software monitoring and control
may be effected.

FACILITY AND USER TIME ACCOUNTING

Automatic operating system functions which have been imple-
mented to keep track of time for the overall facility, for particular
user jobs (or tasks), are included here.

Execution of Job or Program Abortive Procedures

In the event the executive system detects user program
errors which appear to cross certain prespecified boundaries, the
operating system must execute a procedure which will provide suit-
able information to the programmer so that he may detect his error
or errors and then abort that job. Also, the status of the computing
system components must be updated so that the next program or pro-
grams will have the appropriate machine components available.

Updating Job. Program and Facility Time Accounting

In a system which provides preset timed interrupts, a job
may be started after a clock is set to an appropriate upper bound for
running programs not yet checked out. At the end of the appropriate
time, prearranged within the facility, the operating system may execute
the job or program abortive procedure. If a clock is provided then it
is possible, within certain definable limits, to state the exact amount

18

of time used by a particular job and include times for each of the com-
ponents used. It is also possible to provide the facility maintenance
personnel and operating system maintenance personnel with data on times
used for secondary storage transfers, number of storage accesses, etc.,
as well as general statistics relative to the number of jobs executed,
frequency of utility routine usage, I/O channel and equipment usage,
etc. This accounting of component times can be done to any degree
desirable providing appropriate hardware is included and the operating
system contains the necessary algorithms. Multiprocessing in a multi-
access environment proposes some interesting and debatable problems
concerning time accounting.

Generation and Maintenance of an Operation's Log

A permanent record of operations in many installations is a
requirement. The generation and continuing maintenance of some type
of logging procedure is needed for the facility for management reasons,
maintenance functions, debugging operations, etc. This operation's log
provides a record of past experience needed to predict future loads and
requirements, as well as effect facility time accounting.

Maintenance of Separate Time Records for Individual System Components

Continuous updating of appropriate tables of one type or
another is required to keep a separate time record of each system com-
ponent. This must be done in conjunction with the I/O allocation,
monitoring and control function, but is mainly a concern of the time
accounting function. This function is almost entirely machine depen-
dent.

GENERATING AND UPDATING THE MASTER SYSTEM

In any operating system certain portions are dedicated to assist-
ing the overall installation maintenance programmers in updating the
master system, such as adding new routines and deleting or correcting
old routines, as well as generating new master system tapes or new mas-
ter operating system copies. Any minor function which contributes or
assists in doing this is included within this major aggregate.

Maintenance and Updating of Compilers. Assemblers. Utility and Other
Routines

A basic structure is inherent in an executive system which
allows for modifications to be effected to portions of the programming
system. New versions or corrections of compilers, assemblers, or any
general utility program in this system may be added or deleted by

19

following the rules associated with this basi; structure. Special
cases may exist in which this function depends on unique hardware fea-
tures but in most cases it is machine independent.

Maintenance and Retrieval of Files and/or Systems of Files Directory
Tables

The function of keeping a catalog of files for a whole cate-
gory of user•programmers is one wnich can consume time in programming
and in error detection. The directory tabie may contain information
concerning each file in the system in addition to containing specific
formats and data types within the files, Ihis would provide a central
data base for various applications within an installation. How this
particular implementation is effected relative to available compilers
and macro-assemblers within the system i s of considerable importance.
These files and systems of files are often connected with the master
system tape,

OPERATOR AND OFF-LINE COMMUNICATION

A significant portion of tne executive system is often directed
to on-line messages for the operator or directions to an off-line opera-
ting system which is controlled bv an operator, Also, there are por-
tions of both user and systam programs which are designed to react to
operator requests concerning input jobs coming from the off-line equip-
ment. All functions appropriately connected with these communications
are described under this major function.

Organized Interface With Off-Ljne Computing Equipment

Many installations load input jobs or tasks off-line as well
as print and/or punch off-line to conserve time on the main computer.
The off-line device is very often a small computing system capable of a
variety of data processing functions, Some logical interface and agree-
ment in terms must be established to effect the transmission between the
computers. An organized and standardized data configuration and command
interpretation must be obtained if accurate and efficient job processing
is to be realized, There would naturally be a high dependence on fea-
tures from both the on-line and off-line computing hardware,

Communication With Other Computers or Computer Modules

One function performed by any multiprocessing system is to
provide some standard communication between central processors. Whether
a master-slave arrangement is implemented with one central processor
permanently being master, or whether any central processor could be

20

master (depending on machine conditions) is immaterial. The concern
here is that the communication between the central processors is per-
formed, and the flexibility and open-endedness of that communication
capability to provide the requirements for future modifications or
additions be available.

Control and Communication With Subsystem Monitors

In some computing systems more than one level of monitor
is required. Off-line equipment often has its own monitor requiring
certain standardized transmissions and instructions. The executive
system in the main computer must effect control by suitable communi-
cation in order to produce the requested and appropriate job output.
It is possible for the main operating system to decide itself whether
5 particular request should be done within the main facility or com-
municated as a request to the off-line computer. This function
depends on machine hardware features and on the objectives of the
executive system design.

Generation and Console Communication of Output Manual Operator Commands.
Input Requests and Associated Messages

One major objective of an operating system is to automate
those functions previously required of a computer operator. System
requests for activities such as magnetic tape changing, or card deck
insertions, etc., are most often done manually. Also, the operator
must be able to communicate with the automatic operating system in
order to verify and/or specify what has been done. Equipment failures
can be reported this way; that is, ones which do not stop machine
operation. Listings of which programs are contained on certain out-
put tapes and are to be printed off-line may be communicated to the
operator. A flexible and efficient system for operator and off-line
communication must be established in any system and is an even more
important function in a large and expensive installation.

ERROR RECOGNITION AND RECOVERY

Those functions which detect errors in the central processor,
I/O channels or equipment, and the relevant recovery procedures, are
discussed under this major function.

Maintenance of Continued Operation During Limited I/O Component Failure

Each operating system must, to some degree, monitor input/
output components and channels to continually ascertain whether fail-
ures have occurred. This function could be sufficiently flexible so

21

that a failure of a device not used or needed by tne particular pro-
gram now running would not affect that program. Further, it may be
that several of this device type are available, and switching to the
use of a different one could allow the program to continue. For
example, if several units are available as a scratch tape the opera-
ting system could (under certain circumstances) switch to another if
one failed. This function is highly machine dependent.

Detection and Recording of Programming Errors

The operating system must continually detect errors made by
user programs such as incorrect input/output request specifications as
well as hardware system errors. Also, these errors must be recorded
appropriately for programmer post analysis, reconstruction and debug-
ging activities. In some cases, the entire system may require restart-
ing depending on the particular error. At any rate, this function
depends on both hardware features and software design objectives.

Execution of Restart Procedures After Equipment Failures

In applications requiring program execution ranging from
two hours to several days, capability has usually been required of the
operating system to record the contents of the machine periodically so
that the program may be restarted if equipment failures require com-
plete abortion. The operating system must at each one of these peri-
odic times effect the memory dump and at the appropriate time use the
last memory dump to restart the entire program rather than starting
from the beginning. This function is essentially machine dependent.

Monitoring Program Violations on Hardware Limitations

Many hardware limitations on specific computing equipments
are hardware protected such that violations affect only the user pro-
gram. The operating system can and does, in many cases, detect this
type of error by suitably monitoring the program operation. Some com-
puting systems provide a memory protection feature implemented as a
software technique. This type of technique may be needed in lieu of
an appropriate hardware feature. In any case, this function depends
on unique and particular hardware features.

Parity Checking and Tape Redundancy Calculations

Memory parity checking continuously, as well as calculations
for reliability of magnetic tape data transfers are both performed
within the operating system. In one multiprocessing system, a second
central processor continually checks memory parity at the discretion
and under the direction of the operating system. Whether or not a tape

22

redundancy calculation is performed may depend on how much of the actual
machine language I/O is performed by the operating system. This func-
tion is indeed machine independent since parity checking and tape check-
ing are very common hardware features. This function may be implemented
in conjunction with the execution of restart procedure.

Generation and Updating of Error Frequency Counts for Customer Engineer's
Analysis

Parity error recognition during transmission or memory par-
ity errors detected during confidence checking are needed by customer
engineers in order to determine and maintain reliability. Any error
occurring in the machine such that the operating system may effect a
second try should be recorded for any appropriate component. This par-
ticular function is designed and implemented with other error recogni-
tion and system recovery functions in mind and is highly machine depen-
dent.

Determination and Recovery from Unstable or Nonconverging Iterative
Processes

It is a function of the operating system, in many cases with
the assistance of the hardware features, to detect tight loops within
programs which after a reasonable period of time appear to be noncon-
vergent. Some operating systems provide a feature whereby detection of
this type of error when noticed will effect replacement with a suitable
alternative procedure. This is best explained as an executive function
since normally the programmer, after having performed post-analysis,
would then decide what alternative procedure to use. This function
depends on unique hardware features.

DOCUMENTATION

Reference and introductory manuals as well as output listings or
print-outs are highly dependent on the particular computing system pack-
age proposed. These documentary type items must be evaluated as a com-
plete package in which the specific requirements depend on both the user
and on the make-up and content of individual vendor's proposals. The
evaluator must determine how adequate each document and print-out is as
well as determine what additional documents or additional print-outs are
required to provide a completely documented system.

23

SECTION III

MATRIX OF FEATURES

Executive system features designated as important for compara-
tive analysis are identified in this section. Each feature is pre-
sented with the appropriate format for inclusion in the three step
procedure described in MTR-197, Volume I. In total, they represent a
composite of important features each of which is described in more
detail in SECTION FOUR.

The character "X" has been used to show which measures of soft-
ware capability are affected by the features. It is apparent that any
one feature, in some esoteric way, may affect each and every measure
of software capability; however, an "X" has been placed under those
measures which significantly affect the feature in question. The user-
evaluator team must determine what measures are of particular impor-
tance to them, in addition to deciding whether each measure will be
affected favorably or unfavorably (and to what degree) according to
the system requirements. This will establish ground rules such that
proposals may be evaluated relative to preestablished specifications
appropriately adjusted to reflect characteristics of the application.

24

DNINIVHI

N0IIVIN3WnD0a

3DK3dN3<I3aNI
X

NOIINaAHaiNI X! X X

aoHVNaiHivw

xiiaNvnnwis X X X

Ainiaixau HIMOHO
X X

aovaois xavciNooas

AH0N033 xonaoHd:
X! X

noiiv7niin o/i

N0IMD3X3 X X X X X

NOIIVIIdWOO X

M0X03H0 X! X X

ONIWWVHOOHd X X

00
e

•H >> CO
13 i-i a

CO w B
CO

0
•-I

CO
o

•rl
l-l
cu

#%? **J >-) co •i-l co X 4-1 I-I

B jj -) c H i-H 4J o CO I-I

52 12 - o 01 CU a *-l u cO

o
PQ / u 60 -H w i-l cu •H u u

M / 2 c w i-l c E T> 4-1 •H cfl H 2i / M •H CO CO CO •H 60 CU •H B Oi
*4 3 / ij rH C X U cu T3 CO

•4 fa
o

/ S3
/ Q / w

X -^
P -2

0
!"3

cfl
fa

60
s

•H

C/3

E
CO
U

i B c
•l-l

Pi co o a r-l B TJ cO 60 U c
8? / u CO O o CD •i-l O l-i O CU U o
M / w <: •H X u u 60 H 4J o •l-l
5H <D 4-1 o 0) CO 0 fa CU 4-1 4J
w / ^ •> 4-1 3 >-j > XI 4J H S 3

/ w 60 cO U cu O a fa >> CO co CJ

/ ^
C -H CU 0 CO !-) CO •-I M B cu

•H M X 4J M 4-4 i-H CO o X
•H a w 60 60 4J O s fa •H fa

/ Pi •H O XI c s C 4-1
o a H 4J o •H •H 01 g 60 u 0 CO ji """**. 6 a CO <-> c B 01 cu c cu CO o CO
Q o a CU a a fa 4-1 •l-l 4J t-i •H CO

s z O <: H e 3 3 co rH X 60 4-1 H
/ H 53 o pcS fa 4-1 >• 3 fa O •H

M "O M u O CO T3 M T3 6
PQ o c O U-l M M CU 4-1 fa o cfl / s CO o 4-1 m 4-1 O o C 6(X! O S u

/ 53 >* <-} B 4-1 4-1 o c o c 60 / W .* B B o •H -H CO a 3 M 6£ O

fa M O o •H >. >> 4-1 E o fa at c H
B • O -r-l •l-l 4-1 4-1 4J co E o •H I 4-1 -H fa

1 ^ 8 M 3 *J CO •H •i-l •H N CO •l-l CO 0 01 w i

/ ** cu 3 •H CO l-l r-l •i-l U 6 3 4-1 E « M

s e o > C •rH •i-l i-l 6(s i-l 1 cO 3 01
/ H co cu O cfl O O •H O CJ a l-i X 4-1

/ ^ £ •u fa
u
H

cO fa CO
fa

4-1 U
I=> fa £ C

l-l £ CO 0)
fa a B

I-I

/ fa m
/ O O «S PQ u Q W* fa o PS M ^ «

/ mawsrainbaH

25

DNINIVHI

NonviNawriDoa

33N3dN3d3(INI

N0IIN3AH3INI X

3DNVN3XNIVW

AiisNvnnwis X X X

AI11191X313 HIM0H3 X! X X

30VH0IS AHVONODSS X

AW0N0D3 iDnaoaj

Noiivznun o/i X X X

NOimoaxa X X X

NOIIVII<IW03

M0)D3H3 X X

ONIWWVHDO^d X X X X X

to
c
o

•1-1 CQ

CO

3 a K 1-1
4-1

td
§
cd

co
01

< M / <" o> u to e H •r-l

D i i-l / 3 i-i ai 4-1 o 60 4-1

CO M / c i-i ex 0} to •H O •r-l
<£ u, « / '* cd o a) 0) 4-1 H U
c3 o «Jl / ^ U c to 3 td PH o
Jjrj CO PM 1 B n) oo •H C cr CO rH •H

a / Q PH c 4-1 0 01 4-1 P >^ u
HJ PM / U •1-1 P •r-l PH CO Q. H PH

2 o / s-^' c I-I o 4-1 >, 01 •rH cd
•H 01 rH •r-l 4-1 TJ P a U e

w / u 4-1 rQ -o •r-l 01 60 CT £ XI 0)
2 / <3 c MH 3 "U i-l s c 01 •H 4-1

Ed / H 0 3 CO < •H •1-1 •1-1 PH r-J to
u / r-l •1-1 pq ,£> H u e >.

/ ^ 4-1 C p td o C cd C CO

/ Q p r-l 0 PH r-l 6 4-1 o U £ / w u 04 p CJ •H td •H •H 60 "U

/ F* 01 r-l g cd M c 4-1 o C
/ u £ r-l o 01 > DO 0 cd u CO cd
/ co td u r-l < O s I-I PH —

u 3 H •i-i u U

/> « XI td 4-1 4J 0) PH rH B" >% OI 01

/ H CO co o PH o 3 60 01 § U co CO

/ H S <: I-) tn cd (H UH o cd p p

/B H «w CU U 01 CO CJ u
H e o to k o co c £> UH MH

/ w CO PSi cd P o W P p cd jiS •H 0 o

/ s
>* o rH to U-l CO PH u to r-l
CO 60 c T3 CJ 4H H cd 60 60

a o o 01 C >, O H U c s / PS1 s H •1-1 rH o u ji cd •r-l •1-1 •1-1

/ o B <i PH 4-1 i-l •r-l td o r-H 4J o 4-1 r-H u
/ SB I to O to u td O td •rl td p o
/ H M pq cd 4-1 M •H o w U a a p •o 4-1

/ H PS o H •H 4-1 > D. 4J i o cu •H

/ i O •n 4-1 s C O e w e o 4-1 rC d
r, c •r-l o H oi o o . £ P O o

/ w I-I •J u PH H UH u M < CO £
/ p^ & •
/ o o M

1-1 s 55 O PH o- PH CO H p. >

/ XN3W3Hinb3H

CO

H
CO

1 ><
CO

SS
o P<
I-l O
H H
< H
:-> 2
iJ Q
<; X
>
w e&

o
w
oi w
< > i H

H tv P
C5 U
CO w
Pi £
o
Cti P

CD
Q 2
O H 3 H
H <;
g g

PH

PH o
W
H
CO ' •

o
w s
s (M
H oi

CJ
i Q

w
H

26

ONINIVHI

NOiivinawiDoa

3DN3(IN3cI3aNI

N0IIN3AH3XNI

3DNVN3INIVW X

AII3NVTMHIS

AiniaiX313 HIM0H9 X

3DVH0IS AHVUN0D3S

AW0N0D3 IDnaOHJ X X X

NOiivznun o/i

Noimoaxs X

NOIIVIIdWCO

lilCttlDSHO X X X X

ONIWWVHDOHd X

co

CO

Cd

Ed
O

1
o

fa o

M
fa
l-l
«
as
5

H
H
8
fa I
o z
H
H

g
fa
fa
o

C/l

H
CO
>•
CO

fa
8
z

OS
o

/ <u
/ 3

/ -H
/ *J
/ c / o

e> z
l-l
fa
g w 3
CJ
CO

fa co

fa
o
p
z
<:
m
o

M

CO

3
cfl
M
60
O
U fa
>.

4-1
•H
M
O

••-1

3

l-i

O
4-1

^
4-1
•H
l-l
•r4

CJ
CO fa

•

co
0
cO
U
60
O
H fa

4J
•l-l
M
O

•i-l
H fa

O
<4-l

60
C

•i-l
i-l
3

•o
01

J3
a
co
01

u
•H
4-1
CO 1

4-1

<

•

S
y
s
t
e
m

R
e
o
r
g
a
n
i
z
a
t
i
o
n

F
l
e
x
i
b
i
l
i
t
y

f
o
r

H
i
g
h

P
r
i
o
r
i
t
y

P
r
o
g
r
a
m
s

„

C
h
e
c
k
i
n
g

o
f

P
r
o
g
r
a
m

a
n
d

D
a
t
a

*

I
d
e
n
t
i
f
i
c
a
t
i
o
n

C
o
m
p
l
e
x
i
t
y

o
f

T
a
s
k

P
r
o
g
r
a
m

a
n
d
/
o
r

*
J
o
b

Q
u
e
u
e

T
a
b
l
e
s

co
Ol

i-H
•JO

CO
H

01
P
01

4-1
O

01
U
C

a
0)

4-1
a

•H

CJ
•H
§
cfl

<

P
r
i
o
r
i
t
y

S
c
h
e
m
e

F
l
e
x
i
b
i
l
i
t
y

f
o
r

J
o
b
,

T
a
s
k

o
r

P
r
o
g
r
a
m

/ IN3W3Sinb3S

CO

fa
CO

1 >H
en

z
o pel
H CJ fa H
< I-I
o z
-i o
<! £ >
M PS

o
| fa
< > 1 H

H
fa &
O U
CO fa
Pi i
O
fa M

CD
a Z
Q M
X H
H

fa
fa

fa n
fa
H
CO • •

O
w fa
s >H
f-H fa

Q
I C7

w
H

27

DNINIVHI
"1

NonviNawnooa

3DN3dN3d3C[NI

N0IIN3AH3INI

3DNVN3INIW

AlISNYLinHIS X

AXI1iaiX313 HIMOHO
X X X X X X X

3DVH0IS AHVQNOD3S

AW0N0D3 IDnaOEJ X

Nonvznun o/i X X X X X X X X

NOIIH03X3 1
X

NOIIVTIdWOD

IA0M03H3 X

ONiwwvaoo^d X X X

w
4J CO
co 4-1 a
CD c o

CO

w s K f3
p CU

B
•i-4
4-1

oi <11 H /eel 4) ex CO

P
CO i P

M
/ E-<
/ 55

W •l-l
3

U
•H o

fcn 03 / o O h CO cr CM "^
u\ o £ / U •*•»». 0 a Ed •H r-l
C3 CO M CH cfl 4-1 T3 r-l l-i

A / Q U O c O CU 01 y
J fe / 55 c 60 60 01 s C s •I-I

d Q 1 < o B O M B CO c c r-4
•H U Q. M CU cO <$ o

w / u co u PH T3 •H 1—1 O -H X. XI XI

/ 2 >^ 0 H 3 nj 4-1 4-1 u u I M / I-! cO 4J M ca a CT a •l-l

o / 0*5 i—i •H 01 T3 •H W u CO U CO co CO
/ o 01 C CO c CU 4-1 CO 3 3

/ E-" jQ o p cO CO o 4-1 C 0. O O 4-1

/ I-1 £ 4-1 01 *••-- X cu co 01 CU O

/ » S <4-l CO 60 M W co g o a c
/ 2 co 4J o a CU 5 CO cO c
/ £ M a 4-1 cO co •—I CM O 60 M 4-1 4-1 o

60 3 >. o rt *d CO O -r-l •H O i-l l-l •l-l
/> * 0 u 4J u c •i-l > CO 3 2 co
/ H co 55 H u •H CO CU u C OI co co B B I-i

/ H n O P* cu X Ci i-1 6 CU O Q CO "O 1-1 •i-i 01

/ 6 M 4-1 0) O o 3 a. •H 0) OI CO co >
H H 4-1 e r-l •H 4-1 6) co CO G ai oi a

/ W 03 3 0 1-1 a •u •l-l 3 O a C C o

/ ^
>j § •H ^ co 4-1 i-H T4 CO W •H •I-I U CO

to 3 c CO O o T3 4-1 CO o U 4J CU 5» > 4-1
o 3 ~~- u T3 •H < C cO M CU CO 4-1 CO 4-1 4J C

/ • OS P •l-l O H < r-l G l-l o < " 0) -H CU -r-l C 01

/ W
/ 55 8 <; 4-1 3 T3 •i-l l-l o •H •H CO i-H CO r-l oi B

a) C co 0> CU XI 01 •H 01 c w > CO -i-l CO -i-l •i-l c
o •i-i •r-l - CJ n •H C 4-1 M 3 CU CU CU XI CU X) CJ 0£

/ H 2; ^N, 4-1 4J N 3 3 X c •H 3 § 4-1 Q M eg U cO •i-l -r-l

/ 1 §
M •i-l C CU T3 4J 01 03 "U 4-1 E 4-1 u a u a 4-1 CO

a O CO CU 3 l-l x: -o 3 O 3 e 3c3 3 3 4-4 CO
r-l O P « fe tn U «j fn U « o w <

P* «: •
o o 1—1

M <u PQ u Q w Ex O X M >-i M

/ XN3W3Hinb3^

z o

X
w P
to
>^
CO

o
H

W 05

>
H
H
P
U

CO w

2

w
PM
o

2 Oi
O
Q
w
H

28

DNINIVHI

NouviNawfDoa

33MaaN3d30NI

NOiiNaAnaiNi X

aoNwaiNivw

AiiaNvrmHis X

Ainisixaia HIMOM X X

aovaoxs AHvaNODas X X

AwoNooa iDnaoHd

HOiiYznun o/i X X X X X

Nonimxa X X X

NOIIVlIdWOD

ino>D3HD X X

ONIWWVHOOHd X X X X X X

CO

3
4J O ;>•>

m **•*, 4-1
4J r-l •H

CO

l-H

0)
B
01

CO

B
E
cd

r-l
•l-l

r-l
p g r-J rC 0) u •H O 4-1
C/3 M u 4-1 60 X l-l a <J fa CQ CO CO >, O 01 co 4-1 CO 0)
w O < >* 4-1 u r-l 01 C 01 B
5-1 co fa / 9 4-1 CO •H <3 tu fa o o 60 a.

3 / S3 c l-l 1 •H o CO •H
•J fa / 2 01 60 •r-l 4J o c > CO 3
^ O P C rO 3 4-1 o 01 T3 CO cr

/ " 2 •H •H a. M 1 •H a c 0) W w / 2 60 4-1 X e O B 4J cfl X z / n •H 3 0< M y-i (0 CO 4-1 01
EM / »5 CO fa r-l u u 3 60 01 i-H
O / p co E PM 60 1 60 o O. c l-H o

/ H /-v < o e o l-l 4-1 •l-l o CO
/ H TJ CJ 0) •H 4-1 H l-l 8 u co C
/ z o> O a 4J •l-l Oi < o a o
/ 2 3 •*s« 01 01 CO U bZ ^•» 4-1 o u
/ X C M M rC O o c 60 XI 4-1 •l-l u
/. -H •f-l u O 60 •!-! tt c 3 c 01

- 4J U 4-1 CO »-l to i-l i-l •H (0 a £ OJ 4-1

/> z c •H s i-H CO < 3 i-H c 4-1 o
/ I"1 C/3 o o r-l w oo •< CO 13 r-H l-H r-l o E
/ H £ l-l u O C M y-i o) O o 01 E CU

/ 6 w H ^ ,a 4-1 •i-i H < O jC n l-l 4-1 I-l 01 OS
H

3rJ fc
O 4-1 O u 4-1 4-1 O o aJ

/ w CO cd 4-i co >,co a c CO U-l

/ a
>-" O O CO 60 •o 4J 4-1 o o c c y-i 0
CO ,-! Pi c a <u aj •l-l 4-1 u a o o o

•J H 01 •H & 3 Q >-i c •r-l o c
oi < Z r-l l-l cr •i-l CU 4-1 l-l 4-1 60 o / ol y O ,Q o co •r-l 4-1 -o B o 01 CO 0) a •r-l

/ Z O U •H 4J 3 C 3 co a c 0 4J •r-i 4J
/ »H H X •H 4-1 £ a. 4J -i-l 01 5 o o 3 •rH
/ H Z M 01 Q CO CJ 4J •--1 3 (0 CO r-l B CU •3 / i y r-l O 4-1 0) 3 3 CT (0 6 r-l 01 3 •D

X fa X CO H O CO W w < Oi O" < u .
fa OS M
O O M •J X Z O CM O" (K* CO H 3 >

/ XN3W3Hinb3H

co w

o

o
o
w
H

29

DNINIVHI

NOiiviNawnDoa

aDNaaNajaaNi

N0IIN3AH3INI X

3DNVN3INIVW

AiisNvnnwis

Ainiaixaia HIMOHO X

aDvaois AavaNooas X X X X X

AW0N0D3 IDildOHa X X X X X

Noiivznun o/i

N0IinD3X3 X

NOIIVUdWOD

MOXDSHD X X X X X

DNIWWVHOOHd X X X X X X X X X

CO
CO

X
01 4-1 4-1
P c Cfl CO

CO a K co cr
•i-l

01 OH 3
u

•< M /S5 CO c p B p
o

|
fl / o .-I x 60 cfl 4-1

CO M / H H nj u •1-1 M co 01
<£ b CQ / E"1 3 01 4J 01 CO 00 4J OS
tzJ o <

/ ^
o £ r-4 CO H CO o co co

[yj 10 a. •t-l i-l a < H 0) TJ C 4J

hj c*. 6 / o 4-1
m «fl

CO
>>

4-1 co
OH p

cr
3
cfl C

O CO
••-I 01 i o / M 4J o 01 — •H CO 60 01 CO 4J p

/
c T3 u i-l 01 3 OS CO co a

w <U c 3 oi •H M •i-l 4-J a. CJ 01
j^ / w 1 o i-l ca X •o 4J 01 co s O OS
CJJ / u •H CJ P cfl X) U 60 01 I-I

O / < 01 4J C 4J <n 3 a) p 0) >
CO cfl M oo cfl H u cr 01 OS 4-1

/ o > a O 01 4-1 o «i oo •i-l
/ H S •i-l O ••-I O 4-1 CO 4-1 OS Cfl 01 iH

/ w cfl 4-1 4J 4-1 i-l 3 3 CO M i-H O
H O CJ 01 I-l 4J 0 <4-l O X -H
60 < >> m P3 0 3 CJ oo o 4-1 cfl U
o 4J 4-1 co a 01 e CO CO H OH

H H TJ •i-l o 4-1 XI 4J OS •i-i >» 01
#H CO CO OH a I—1 CO H o «=£ H 4-1 4-4 i-l T3)-i / b gc >* ca •i-l 01 CM C o •i-l O X C 0

/B pq CO M X O CO H O 4-1 i-H cfl CO M-l

H O 3 •i-l -H M CO O M •i-l •i-l ?^H
/ w CO Q 4-1 o X > o 0) <4-l C co a to XI 4-1 co p»

/ x >H 25 •H 01 <u 14-1 g a •H a •3 c •i-l •H 4-1 >1 *->

/ M co <: 01 4-1 i-l Q CO a) C 6C o S M X .-1 C Cfl -i-l
9 cfl &4 P*. M > O OC •H 3 0) •H 01 U i-l

as OS cr i-l 01 4-1 01 •r4 ••-I 3 4-1 4-4 4-1 I-I X g M -i-l

/ £9 8 w •r4 p dj 00 ••-I o 4-1 co XI CO O <U Pt4 cfl B <J x
/ » CO s a e co •-I H CJ •i-l 01 4-1 OS H OC •i-l
/ H M D x •I-l OJ u •i-l Oui 01 > Q •H 01 u •rl -i-l cfl X
/ E"1 55 0 a X 0 CJ 4-1 0 S CO T3 « Cfl CO 4-1 0)

/ i Q 01 3 CJ 4J CO M 14-1 u c •i-l cfl C CO > CO CO i-l

£ • H CO CO lM O M OH O P W cfl P <J <J Q f-H
/ w H
/ B« BS M / ° o M <: PQ CJ Q w PM e>* X HI >-) us

/ iN3W3Hinbara

H
CO

1 5M
CT;

21
O as
H CJ
H H
< i-(
P Z
-I Q
< JE
>
W PS

o
| w
2 > P H

H
LtH P
O U
CO w

BS 1
o
UH

o
Q E5
Q H
* H

OH
OH O
UJ
H
CO ••

o
W R
9 H
f-H pcS

O
1 Q

55
H

30

ONINIVHI
 1

NC-uviNawnooa

3DN3aN3<J30NI

N0IIN3AH3INI X X

aoNVNaiNivw

AiiaNvnnwis

Axniaixaia HXMOHO
X X

aovaoxs AHvaNcoas
X X X

AHOnooa xonaoHd X X X

Noiivznun o/i
X X

Nonnoaxa X X X

NOIXVlIdWOO

xncoioaiD X

ONIWWVHDOHd
•

X X X X X X X

2

s
o

•H
4J
co

4-1
C
0)

o
4-1

u 3
O

•H
4-1

01
a
fl)

to P •J
M 1) •D 0) 00 0 co

X fl)
4-1 M

3
O

H
^ b V s 3 a 4-> C •H 3 •H w O 2i CO fl) cr O •r-l CO 01 O 3 oi 4J >^ s PM •H ~-^ T3 U I-l B 01 -H •rl fl) 4-1

a C O C l-l •M <i) o fl) QJ B JJ CO 4-1 N •H
M (*4 o 4-1 £ > «4-(4-1 0) -G 01 fl) B 3 •i-l I-l

«9 o o u O >4-l l-l O X! U 01 o i-l •l-l /-< w CO to ai 3 o U 3 CO < CO O -H i-l u fl) U i w / /—N 4-1 4-1 H O 4-1 PH pq 4-1 CO 4-1 X •H CO U 25 / WT3 CO s •H CO H C •H o o 4J PM 4J
W / O Oi 0) V 4-1 4-) a 1-4 4-1 01 01 o 3 T3 l-l •*». •H 01 o

/ 05 3
3 g. c a) o O CO 3 4-1 -H o o 04 l-l 3 3
a* CD H •H 4-4 td a* 4-1 4-1 •H S M o <

I O i-l ai <D 01 B 3 So o
4-1 PM ai 3 CB 4J 4J -O •i-l 01

/ H u o5 CO 61 s s^ 05 PQ U a) 3 3 0) M 4J 3
/ CO 3 co 01 i-l 4-1 ,C O CJ 0 0) ca co fl) -H

/ o >•. X M CO s •H •i-l 4J M MH O -H g a) fl) N -MS
/. S CJ 4-1 o o x£ B 1-1 •!-(<u C H i-l 4J 3 01 H i-l U

w ^-^ •H I-) 4-1 •H 3 CO •H <J r-l fl) oo u i-l OJ /> H M CO o 01 XI P 60 <! >H •H o -o a) X
CO 3 o 4-1 n o> 4-1 a) ca c c 3 CO 0) 3 •i-l u

/ £2 S >4 o •H o > C 01 W X» 4-1 M O 4-1 U CO Q fl) 4J

/ g
CO M H u 4-1 -H a •^ 0 O c^ O -H <! •l-l l-l

H H £ C co O 4-1 3 •-> CO u ca 4-1 M S 3 oi / w ss O T3 3 n) CO >^ rt 4-1 >> C fl) o n) M X
/ tSi >• 4-1 •i-l 3 >> o o> 4J i-H 4-1 01 4-1 3 4J O 01 u 4,3 / CO o 4-1 O 4-1 K M C 1 2 •i-l I-l 0 OJ i-l u U "O M

•J ca u •H < 01 1-1 •< B I-l <; ai O 3 / 05 Pi -J co i—l Q) U > P 4J QJ •H CO 01 •r-l 0) co l-i 0> '
/ u 8 w •< 4-1 D CO CD t-i M 3 •H > 43 M 4-J S-l X 3 U fl) fa 3 T3
/ 25 CO u a i-H cfl QJ 01 M C1J •r-l 01 O -H •r-l T4 01 01 O 3
/ ,H H p « •H B •H 1-1 4-1 -H o to X 4-1 <U 3 X X! 4-1 |-i •^ O. -H
/ *"' 25 >H 3 O B X 4-4 CO 00 CD 4-1 4-1 o 0) u 4-1 U X B 3
/ ^ Q 4-1 eg M

S 4-i
•H i-l 3 co i-l 4-1 i-l 3 4-1 01 i-l fl!

fa s 3 3 o 0 01
O o5

£J
3S • U CO hJ « <C •< o fe m W p5 « M •-)

PM Q5
H i

O O H -J s 25 o PM o1 P<5 CO H p >

/ xNawanmbsra

z
o
H
H
El
-i

E5
w OS

O

CO Cd

u
25
M

i
w
PH

O

o
s
o
Q w
H

31

DNINIVHI

NOixviNawnDoa

aDNaaN3J3dNi

N0IIN3AH3INI

3DNVN3INIVW

AiisNvnnwis

AXI1I9IX313 HIM0H9

30VHOIS AHVCIN0D3S
X

AW0N003 XDnaOHd X

Noiivznun o/i

N0IIID3X3 X X! X

NOIIVTIdHOD

XflO)iD3HD X X X

ONIWWVHOOHd X

a
H
•J

14-1

0

CO

C
0

•r-(
4J

60
c

S
n

ap
s,

It

s

CO
fa
o
to

H
PQ

fa

w
c
o

•H

3
•r-l
rO

•r-l
60
60
3

4-1 3
0 CO

01
4-1 fa

iJ fa 6 4-1 | o 01
3
fa 01 o c rO u Q 4-1 4J

/ <r"N
•r-l o

4-1 M 5-2
§ / WD

/ o <u 6
o -o

0 O
<4-l r-l 01 u / <j a 0 c c o E

/ KG 3 o co CO 4-1 U
/ O iH 60 0 •H C 13 01
/ H 4-1 G M 4-1 O C 01 4-1
/ CO G •i-l ei CJ -H 60 G
/ o c ^ 01 4-1 g cfl M
/•• S ^ G u H cfl g r-l

/>
fa -w ££ cii u O o *o
H CO 01 CJ 4-> C

/1"'
S

to a a CO cfl / c >4 O 4-1 T3 c o 4-1

/ 5 CO t-l O C •r-l o 4-1 03
H Cfl 61 O 01

/ S >• £3 >> c
4-1 -r-l

>1
4-1 CO

CJ

G cfl
/ *• <:3 •H C •H 0£ •H G O r-l

fa r-l 3 r-l 61 rH O •r-l H
fa rJ •H O •r< 3 •H -r-l 4J

/ * 8 w <J X) u rO XI X 4-1 Cfl -
00 •r4 61 •H 0) Cfl Cfl U 03

i—< P X 01 x a 4J r-l o o,
/ ^* CU U 01 •r-l 01 r-l §

/ 3 / w
2
fa

H O
fa fa

r-l 4-1
fa O

3 a
CO o «i (5

/ O O M D£ X >4 N

/ iNawaHinbsra

GO

H
CO
>4
00

fa
o
H
r-l

z

fa
o
w
>
r-l
H

cfl w
fa w
o fa

2
O
H
H

fa

w
w
OS

fa
O

Q
O

w
fa
o

fa o Q
u
H

32

DNINIVHI

NoiiviNannooa

aoNacNHdaaNi

N0IIN3AH3INI
X X

3DNVN3INIVW
X X X i

AxiSNvnnwis

iiniSIX313 HIMOHO

39VH0IS AHVQN003S

AwoNODa lonaona
X X X

Noiivznun o/i
X X X

N0IIflD3X3 X X

NOIIYIIdWOD X

mOMDSHD

DNIWKVHDOHd X X X X X X X X

CO i 3 M
/w
/ w

co
01
G

•l-l
4-1

P 0) o
| fa

l-l / z >s o en c CO « cd
fa J 01

C >>
0)
!-l I-I

XI c •H
4-1 w o 2i / fa M >> 4J •i-l h X o cd P

3u to fa / H A t-l 01 4-1 H cd cd u E o a / z •H cd P 0 M H 4-1 o cd fa
H fa / w ^ u • o 4-1 >. £> c 4-1 u
Si o X> c fa l-l •H M o 60 >-.

M •H o B r-l •J o u U O M w O HJ -H c nt cd 01 M cd

s / Q MH 4J 01 H u 01 p>^ 01 CM fa l-l
/ » a o 01 oo •H S cd a CO XI o / <U M o u 3 o 4-1 cd I-I ••-I C U 1-1

u 01 4-1 u cd CO I-I 4-1 cd o •4
/ ^ a oo x

c w
01 fa E < P I-I CM

/ o 3 PQ o M q H M
/ I-1 01 •H M 4-1 o cd c2 CO c o c
/ H § l-l 01 01 Oli P 14-1 4-1 M 01 0 CM O
/. <C ca •-I c 00 CO w < cd >» 0 C •H •M
A*J u cd 0 cd G Cd CO Q 4J 4-1 -M 4-1 CO 4J /> 3 fa CJ -H J«S .* co 4-1 •i-l 4-1 P M cd

/ H to fa 4J G C C 01 co 01 i-l 01 P 4J C H / b! 2d M 4-1 M-I « •i-i O -H C 01 C "O •i-l B o •M 01 p

/ 5 w S3 O O >-l HJ •J •H p •i-l 01 4-1 01 fa 4-1 B a H ^J •H co 4-1 W 4-1 -O P A CO C 01 -H
/ w to)2 >. >. o a •u C P 01 p -l-l 0 B XI O I-i c

/ s
>* u 4J E 0 C O o OS o > 60 CO 0) 3 -i-l

•^ to >H •H •M o •H 01 -H fa Pi o c 4-1 C/l 4J
ftf i-l .-i a 4J B <-> -o T3 u •l-l T3 CO cd tr

pi 2 •H •H u 01 o 60 01 01 01 ?-, fa l-l M >• 01 4J 01 4-1 / u O Xi cc XI 61 p M P a T3 4-1 C u o cd co' 60 C «• c
/ 5s H pq •H CG •H C H •H M •H -i-l cd -i-i cd co 4J T3 3 | c a

01
/ M M H X 01 X -H 4-1 P -u T3 > ID 4-1 l-l T3 •l-l C B M E / ^ Z iJ 01 u 01 U CO cr co cd o a. p £i ai a td o 01 6t / i 1 w

V! r-4 U r4 P c 01 c 01 u 01 o •H 01 o 4-1 l-l •M 01 CO 01
X , fa <; fa "D l-l prf M Pi fa a pa hJ Z a CO CM •J to p to

/ fa «• >
/ O O M < m u a w fa u pa l-l >-) X

/ IN3W3Hinb3H

to w

33

3NINIVHI
1

NoixviNannDoa

30Jt3aN3d3dNI

N0IIN3AH3INI

3DNVN3INIVW X X X X X

AXiaNVTUlHIS

Aini9IX313 HIM0H9
X

aovaois AHVQNODSS

XW0N0D3 IDnaOHd

NOiivznun o/i

N0IIfD3X3
X

NOIIVIIdWOO

inoxosHO X

ONIWWVHOOHd

co
|

M >,
4-1
•H

CO

B
cfl
l-i
60

CO
fa
O
co

«

*

l-l
•l-l

A oi

i-l
•H
.JQ

cd
•H

O
M

fa

l-l

I-l
Cfl
l-i
•a

fa
O u

(0

y
C

a
i-l
0)

CD
CO

p

•H

l-l CD
/ '~s U 01 i-i co o y

C5
/ C x>
/ Z <u
/ < 3

•rl C
•r-t

s
o

cd

co C
/ o

*
•!-(01 QJ CD

/ Z -i-l 60 4J 4-1 C 4J
/ O u c cd Cfl •l-l C

/ t-1 c •1-1 >> U o> 4J -H
/ HO 4J H cu u

J* s^ CO nj ex H

/> xt H o fa
p fa x> CO "O

/ H

/ B £-1

fa fa D •H H XI <4-l C
HI U hJ o O O cfl
z z H 14-1 "->

03
>4
CO

2 2 O
<4-l 01 >1 01

co C
CO o / s w r-l 4-1 y (V i-l

/ ** >< H C 3 •i-l C C 4J

ai OS Z o "D i-l §
CD
4J

Ol cfl / i 8 fa ^
m 2

•H
0}

•1-1 o

•i-t

cd

4J i-l
V 3

l-l CL

I H z M > CO 4J C Q. i-l
•J o a •i-l •H E C

/ ^
H

fa
o
z

3
CO I cS^

/ *• / ° g >
HJ

•
z'

•
o

•
fa

/ iNawarambM

eg

H
c/3
><
CO

fa
o
H
H
2

fa
O

C

£
w
H

34

ONINIVHI

NouviNawriDoa X X X

aDNaaNadaaNi

NOiiNaAaaiNi X

3DNVN3INIVW
X

AiiaNvnnwis

xiniamia HIWOHO

3DVHOIS AHWN003S

AW0N0D3 IDIiaOHJ

Noiivznun o/i

N0Iin03X3 X X X X

tioiivnawoD X X

MOD3HD X X X X X X X X X

DiMIWWVHOOHJ X X

CO

g <
CU

l-l

id co

CO B 3
4-1 CU 60 O

<j1 fe w / CO 10 CH 4J C)-i
Cu o <: / £ •H <4-l 00 u o cfl •i-l U
3L(CO OH / 3 CO 0 c o co P 60 w

d >. •l-l U-l cu o* 60
hJ UH / o i-H cu 4-1 U 60 cu l-l P •u

2 o / o CO co co cu CU CO T3 o Xi cu
/ « c •3 •l-l B X P <J CH CU •o w / ^ < w •3 cu 4-1 M 60 a M

2 X! o O s M c o w / s 4-1 VH cu cj H 3 O o 60 CJ o / 3 co o oo CO X U y-i ••-I c cu
/ H 0 4-1 co 4-1 w 4-1 •rl 04
/ r-A OH CO cu •l-l 01 a p 4-1

/ >< 4-1 CO 60 3 cu c 0 4-1 4-J CH

/ OT a P 01 td c •H •l-l •l-l !3 o
« a S co CU •l-l X 4-1 C 4-1 e /. ^ H 4-1 CO l-l •4 CJ to O CO 60

/> 04
60
O 5 4J

P
cu
s

X
•H

I
c * (-1 4-1 P

o C
•rH

/1-1 CO w H CL oc 4-1 o o o co 4-1

/ H £ CO PL, •O C 4-1 M-l C CO 14-1 0-1 p co •4-1 co

/ 8 p 01 o 5 O -H <x M o C M CU c o •H
H l-l 4-1 T-l •u e O l-l 4-1 -a p !-J

/ w CO tn o C 4-1 >» u 5 4-1 >> CO o 04 >.

/ s
>< O 4-1 (U CJ co 4-1 O CJ CO C 4-J 4-1 C CJ 4-1 CO
CO •H P P •H CJ 4-1 c o •i-l c o 60 •H p

o to l-l M O r-l CU co C O -H t-l 6C CU CJ CU C .-I o / 04 S5 oo O 4-1 3 •H OH cu cu •l-l 4-1 •i-l C •i-l cu l-l -l-l •H CO p
/ S5 £ M G co 60 x 60 C co CJ 43 -H CJ OH XI 60, X c 60
/ 55 H •l-l 4-1 C •r-l co 4J cfl O •i-l CU •H X •H •i-l 60 •H O •i-l
/ I-1 M l-l 4-1 cs o 4-1 4-J c co a > H X CJ M-l J3 X P X -H 4J

/ E-1 •z. Q co cu u c •rl CU CO £ o u CU 4J 14-1 4-1 CU XI CU 4J c
/ ss o W •H > cu 0 P > CU 0 u o r-l CO P to i-l cu •-I a o

s 1-1 M 04 u co W X u OH CJ [in OH CO OH fJH P EE4 O CJ

/ w
/ p* C6
/ o o > <tj PQ u Q w fa CJ* X M >-> X

/ XN3W3HIflb3H

2
O

CO

H
CO

>H
CO

04
O
H

hJ

g
W OH

Z

04 U
a >

fe B
CO w

04 U

z
H
H

ol
w
OH

O

o
w
H

35

9NINIVHI

N0IXVIN3HnD0a

3DN3aN3d3dNI

N0IIN3AH3INI

30NVN3INIVW

AIISNVTinHIS

Axniaixan HIMOHO

aovaoxs AHVONODSS

AWONOOS lonaoHd

NOixvzniin o/i

N0IM33X3 X

NOIIVIIdWOO

in0)D3H0 X X

ONIWWVHOOHd

CO
|

M co
01 co

CO

O
CO

H
CQ

2
•H
4-1
•H
4-1

01
•1-1
4-1
•H

J fe 6 cd
4J
C <ri o 3 CO

w C £
/ s 01

60
C

01
t>0

/ H /-N

i

p
/ co "u 3

/ CO 3 14-1 1
/ , c O <4-|
A <4 -H 1 0

4-1 4-1 1

/H CO
Pi c
W 0 3 4-1

3 / t-1 co u

/ 5 I=> ^ o 14-1

/ ^ CO PM CO o
/ X Jx O 2 60

/
CO

o p§ G
•H

00
G

05 a o M •H
/ £2 8 M o o 13
/ SB H Pi 4-1 U
/ H
/ H |

M P*
Q
W

•i-l
e
1

o
o
0)

Pi

/ ** 03 • • .
/ ° O > >J a

/ iNawarainttra

z o
H
H

a

i
a. I
co

s

H
CO
>H
CO

Pt5 o
H
M
z i
PS
O

O
CO M

PC o
E3

z

o

o

1
q w
H

36

DNINIVH1
-

nouviNawnDoa

30N3(IN3<I3CINI

N0IIN3AH3INI

3DNVN3INIVW X X X X

AJ,I3NVnnHIS

AinigiX313 HIrtOHO
X X

39VH0IS AHVQN0D3S

AW0N0D3 IDIiaOHd X

Noixvznun o/i X X

N0IinD3X3 X XI X X X

NOIIVUdWOD

inO)!D3HD Xi X X

0NIWWVH30HJ X X Xi

CO

O

CO

M
01

CM
CO

01
60

CO B .-I
M / o

a
.-i 4-1

B
ed

cd
CO

to
01

•S fn PQ / 2 X CO u p u w O $ / H 60 id •H H p
* CO

3 / ^
c H 4-1

ca 01
01
B 0) l-J Cn / 5 6 T3 4-1 60 CO •H u

3 O / o •H 01 CO cd 01 4-1 o
PS / u H CO M CO 3 u
B / c_> p >4-4 o CO *o O fi ^

/ "^ B o 4-1 01 01 04 W cd CO CO u 4-1 "O 01 o M 4J c CJ 3 >> 0) T3 >
60 B o >> <i y 4-1 CO 01 •M

/ w 0 V •1-1 u 01 •M p CO 4-1

/ H H s 4J cd 0) M r-1 p M a. o m •u 60 w •H 0) O
/ p=s a H B cd 4-1 B 01 X
/. w "U § eg o w CO s •M S <
#'1 CO B o C u 0 XI H •M /> 3 cd CJ 01 01 4-1 o CM H X

/ H CO o CO CO ^ O I-l o
/ 6? £ a X CM 01 01 "-)
/ 8 z O o M CM CM CM >> B U H < |-i O O O O CJ B •M IH / w CO 01 14-1 /— B cd > O

/ w
><
CO B 60

C
u
B 01

M
01

M
01

01
p 6 01

Q
CO

M B
H •H a O O X A Xl cr 0) o

PQ hJ H •M ? e 0) o O ,C •M
/ £2 8 H O 01 CO 0) 3 P 5 M ••*», ~**» 4-1 4-1
/ z U 4J 4-1 •H E 35 z z fe M H o P
/ M M <! •H fi > cd U
/ •"• z W c •H o u 01 / i / w

£ £ 1! &4 v_ t-l CN en «* to vO r>«

/ 0H a M , • •
/ o o > <d M c_> Q

/ IN3W3Hinb3)i

37

DNINIVHI

NOiiviNawnooa X X

aDNaaNajaoNi

N0IXN3AH3XNI

3DNVN3XNIVW
X

msNvxinwis
X X

Ainiaixaia HXMOHO
X X

aovaoxs AHVCINOOSS

AHON033 IDfiaOHd

Noiivznun o/i X X X X

N0IinD3X3

NOIIVIIdWOD

XIK0ID3HD X

ONIWWVHOOHd
1

M) co
C 4-1

•H a
CO

* £
4-1

id
0Q

O CO

CU

3

01
G
o

60
a »s a •n T3 4J a •H

£3 1^ l-J a a; 3 g s
c ' >, CU PH o •H

2j O
PQ CO

3
rQ Z

60
u H

s CO OH 4J 60 4-1 C s 4-1

KJ Cn o a CO
4-1

C
•H

C
0)

•i-l

u CU
4J

a
01 *s CO M 60 1 o CO G * ccj a 01 •l-l SN o

ij? oo A 60 •a CO a.
w 4-1

c
CO

CO g cu
H M § o / N HI 01 4-1 C 1 0-i o CJ

/ S3 c e o y-i
/ M C o 0) •I-l M I-I
/ H -.-1 (X c 4-1 o O CO CO o
/ W e o n) 4-1 4-1 CU •u <4-l
/ Pi C o p- I-l 6C I-l
/, wo c_> g 01 60 60 cT O CO

/>
/ M CO

co u
e o u cu

o 3 31 o

cm

r-l
•H
cd / c & p o 4J 4-1 4-1 4-1 m 4-J

/ o Z z CO o o O o s 01 01 H <J M >> o B Q
/ w CO H CO c CU ^ S*.-H •H

/ s
>« £g o u 4-1 4-1 4-1 H 4J

00 •H Cl •i-l •i-i cd a
M O c 4-1 $.-I •-I u 0) 01 / PS hJ U •H •i-l s •H •H 3 4-1 •H / S3

/ z y H U 4-1 Pi u rO ,0 6£ CO O
U <J 3 Mi 4-1 CO •rl -H M •H / *"* M < a O C 4-1 X 4-1 cd 4-1

/ ^ Z ta a O •i-l •i-l o> C a 4-1

/ 2S
/ w

^ 3 cu I 3
CO

i-l o CU
CO

3
CO

/ *< Pi M / ° o > w w o PC I-l >-) US

/ iN3W3Hinbaa

co U

38

3NINIVHI

NOIIVINaWTDOCI

aDNaaNSdaaNi

N0IIN3AH3INI
X

3DNVN3INIVW
X x X X X X

AIISNVTinWIS

Aimaixaia HIMOHD

30VH0IS AHVCIN0D3S

AW0N033 IDnaOHJ X X

Noiivznun o/i

Nonnosxa

NOIIVIIdWOO

mO)iD3HD X X X X

ONIWWVHDOHJ X X X X X

co i
CO

•J

w

o

1
fa o
CO

fa o

H
r-l
M
m

3

H
H

B w

o z
M
H

ss
w
fa
o

co 1
CO

CO

o
H
M z s
Pi
O

VI
I.

G
E
N
E
R
A
T
I
N
G

A
N
D

U
P
D
A
T
I
N
G

^
^
^
-
v
^
^

T
H
E

M
A
S
T
E
R

S
Y
S
T
E
M

^
^
^

CQ

B
cd
U
oo
o
u

Pi

r-l
cd
P

T3
•r-l
>

•r-l

c
H

00
C

•H
>i

4-1
•H
T3

sg
4-1
0

01
tO

W

<:

F
l
e
x
i
b
i
l
i
t
y

o
f

O
r
g
a
n
i
z
a
t
i
o
n

S
c
h
e
m
e

f
o
r

*
M
a
k
i
n
e
J
t
e
w

M
a
s
t
e
r
s

S
u
i
t
a
b
i
l
i
t
y

f
o
r

U
p
d
a
t
i
n
g

C
o
m
p
i
l
e
r
s
,

'
A
s
s
e
m
b
l
e
r
s
,

et

c.

co
|
4J
co
>> co
0>

I-l
•r-l
fa
4-4
O

01
o a a
01
4J
a

•r-l

a

co
0)

1-1
rQ
n>

H

>> u
o u
u
01
M

•I-l o
01

i-4
•r4
fa
00 c

•H
4-1
cd

(X

fa

CO
01

r-l
•r-l
fa
T3
01
CO

C
0)
4J
4-1
o
4-1
O

co
CO
01
u o
<
a o

3
fa

C
o
m
p
a
t
i
b
i
l
i
t
y

o
f

F
i
l
e

S
y
s
t
e
m

w
i
t
h

*
C
o
m
p
i
l
e
r
s
.

A
s
s
e
m
b
l
e
r
s
,

et

c.

i

/ iNawaninbaH

CO u

39

ONINIVHI

NOiiviNawnooa

aoNaasadaaNi

N0IINaAH3INI X X X X X X X X

33NVN3INIVH

<ui3Nvnnwis

Ainiaixaia HIMOHD X X X X X

aovaois AHVONCOSS

AwoNcoa lonac-Hd X

NOiivznun o/i X X X X

Nonnoaxa X X X

NOIXVlIdWOD

inoxoaHD

ONiwwvaoo^d

co

01 CO
4-1 o> CO

CO 2 K 3 r-l

3 Ol co
4-1

G
^ M g XI e XI 0)

p a r-l o o Ol c P
en M cj S rC 2
<c Ui « ;>> CJ 4-1 E 60
LtJ o <! a) 60 H CO a E co •r4
Js, CO PH C o 0) 01 O 4-1 CO

3 •i-i i-H c 4-1 c E CJ CO CO
•J H4 hJ o o 3 o a 01 < <tj o i c •1-1 a •H •r-l U 3
K 4-1 •1-1 4-1 g 4-1 3 J3 o cr 01
EM m B ca o ca cr 4J 4-1 01 u
^4 o u u cj o w •H ca Pi •r-l
W / w 11 3 •i-i 3 I-I >
o / a x; H 60 CO M c 60 01 4-1 01

/ I-l 4-1 •H XI 01 3 a C D. O Q
/ I-* •r-1 u <4-l G rC •H o o
1 1 3 TO c ca 4-1 g 4-1 CO •w a O
/ f1* i-l o g o O U 01 4J 1-1 0 *^^.
/ E a u •r-4. cj E CJ 01 6C ca ca •H M
/ o o CJ B o X, I-I c CJ CO 3 4-1

M nt •H ca o 4-1 4-1 "4-1 CB •H M C ca 4-1

i> O H 4-1 CO 4-> •H O 2 6 c o 1 u o
/ H CO 33 >-i <a XI 3 P 4-1 •i-i
/ H § 01 CM a u CO i ri a XI

/8 M 4-1 O ca C co U G 6 c 4-1 3 I-l
H PS a a XI XI O 01 O O <s£ O E co o

/ g CO o a M c 01 a •i-l C 4-1 i-l B o> CJ
>* H P o N ca 4-1 XI 4-1 c O 60

O ca
V

/ w co 2 o XI •r-l •H 4-1 ca 01 oi ca ^) B o Pi
11 4-1 XI CO o XI CJ u 0 •1-1 co

Pi w u N ca H •ri a a 3 r-l 4-1 4J 01 CO XI

/ ^> 8 PH •i-l N ca 4-1 a w « 6c O CO CO r-l <U Ol

/ 85 o c •1-1 XI 0 3 1 3 -rJl n >> 1-4 O a 4-1

/ H H ca r-l a c O 4-4 4-1 CO 01 CO ca
/ H 3 60 •H ca CO E 01 r-l C C rQ a C XI x»

/ ss 3 M
u
o

4-1 4-1

CO

CO O
cj o

r-l O O 3
cj co cS 3 ca

a.
p

/ w M

/ ft* « H / ° o > <s PQ C_) Q w PM o m M •o X

/ iNawa^inbM

2
O
i-l
H

Ex
o

Q

CO

g
CO
•*
CO

Pi o H
H

O

W >
H
H b

co w

o
fa

w
o

o 3
erf
H

40

DNINIVHI

NonviNawnooa
X

aouaaNadaaNi

N0IIN3AH3INI
X X X

3DNVN3INIVW

mSNVTMHIS

Ainiaixsia HIM0H9

3DVH0IS AHVUN0D3S

AW0N0D3 IDfiaOHJ

Nonvznixn o/i X X X X X

N0III1D3X3 X X X X X

KOXIVHJWOD

M0)iD3HD X X X X X X X

DNIWWVHDOHd X

CO

0)
u 01
P CO 4-1

CO w E i-(D c
w os •H ,S 01 2 <J M co c o c 00 ^ i •J fa •1-1 CO •I-l co l-l
CO M CO fa 4-1 CU
<J" fa « x> 4-1 p"> (rt >
CtJ o <: 01 c o XI £ c >. CO 04 / >• 4J •|-| 4-1 CO M o

HJ fa 3 / P3
/ M a 2 CU

CO CU

u O fa 1 CO

2 O / > •I-I > O I-l a a
/ o •J o •rl U <! h o o

w / u 4J 4-1 U o z •l-l
z / w ao CO W CO 4-1 CO 4-1
w / * C CO i-l 4-1 C 4-1 00 u CO o •H 4-1 01 M CO 01 rt c 0 l-l

/ Q

/ 55
M

5
c
CU

oa a
•I-I

CU

p
g

u £ 01
O

•r-l

/ < a co s cr •r-i o CJ > >
o M g 0) p fa P •l-l

1 53 C a O 4-1 tfl pa cr M 4-1 g
/ o O E M C I-i w cfl 4-1 CO CU

M •i-l o 1- CU 00 o 4-1 co M 4-1

/> H 4J u c fa c o -—, u CO C CU CO

/ n CO M CO o o I-l M o Q l-l 4-1 >>
/ fn !>' z l-l 01 -H >4-l D fa <4-l l-l CO /s Ui 5 01 ^! 4J O § 4-1 4J 4-1 CO

H o fa •r-l CO o IH CJ co CJ O 01 01 01

/ w CO CJ O hJ U e o o CU 4J 01 01 I-I co u
/ x >* § 01 o U co M l-l ,o co cd co

1 w co XI 00 o •i-l 01 (3 u CU M u CO <u 3 l-l
01 c o 4-1 rH 0 o p O o 4-1 U 4-1 01

pa pa p •H •H XI •H o cr CJ u co O y-i J3
/ a" 8 o c J3 E C CO 4-1 c 01 C a a u o 4-1

/ z pa •H a cu aoi-i a M pa l-l M p fa CO o
/ W M pa 4J 4-1 4-1 O -H 01
/ H z w c •H 03 u co 4-1

/ 3 o o 3 P> 01 > 01
51 u co co pa < a i-l CN (*1 <f m ^o r^

w fa tf X • • • •
o o M < PQ o Q

/ IN3W3^inb3H

CO

H
CO
>-
CO

pa o
H
M z
§
pa
o

P H
fa b
o u
co w

d

z
H
H

w
fa
o

o
R

o
O
w
H

41

DNINIVHI
 1

NonviNawnDoa

aDNaaNadaaNi

N0IIN3AH3INI X

aDuwaiNivw X

maNvnnwis X

Ainiaixan HIWOSO

aovaoxs xavancoas
X X X

AwoNooa iDnaoad

Noiivznun o/i
X X X X X

NOimoaxa X X X X X X X

Noiivnawoy

inosoaHO

ONiwwvaoo^d X X

0)
CU

P u D* B

ex
o

H

H
m
as
3

P
r-l
•r-l
cd
fn

C

P

•r-l a
X!
U

•r-l

G
,C

CJ
0)
H

00 01

o
•H
4-J
CJ
01
4J
o
rl

a o
•r-l
4-1
CJ

01
4-1

01

CO
4-1

c
p o « (U CU B u 04 CU >> a u

HJ
o

B a, H •H
a. cO

3 r>>
p
cr

CJ

a M >,
*S •r-l 00 g T3 U •r-l (0 o o
M 3 C 1 U o B T3 u G
2j cr •r-l 3 S X c u <u ft Cd a. CU a p w p
H / ^-s i PN X 0) T3 cr o / Q T3 M 1 XI a H CU)H 0)

/ Z CU ai o CU OS o M
/ < P 4-> T3 M oo CM b
/ C CM CJ CU CO CO C CU
/ Z -M nj •1-1 CO a 3 •r-l a. u M
/ O J-> T3 3 o 4-1 J5 CO o O

M C CO O •H CM CJ H CO M
H O 0) •r-l cu 4-1 O 01 CO M

m 7. M U n u 00 CO C/> 6 M CU Cd

/ c
52 SB w 3 CU CO t-i o CJ fa to T3 CU u o CM CM o CM

H O {M V o •r-l O >> M O
u BJ o CM 4-J > 4J CO 04

/ W

£ S£ o o -w w co >^ •M G 0)

/ n H H oo a 4J M 0 01 CJ
/ _ o OH P*. co CM G o •H CO •H 8 G

« OS u CJ 4J o •r-l -r-l r-l 04 u a o m J-I C co U 4J •M CO

/ % 8 iS
U CU 01 •u 0 CO Xl CU CM r-l CM CU
CO P OS E 4-1 4-1 ce a O P 0 4-1

i H 2

8
w u tr p fl T-I 4J CU y c

co CU M 0 c s •ri x; 01 tH CU •H

/ 3 1 u e 1 H o
P*4 rH 1 33 p y

co co
CO

P <3 CO S
/ &• os / ° o w fa o M H •n X h-J a

/ itrawmnban

I

2:
o
H
H
g
g
Cd OS

oo

@

00

OS
o H
1-4

o
o
Cx3
H

42

ONINIVHI X X! X

NOiiviNaHir>oa X X X X X X X X X

3DNaaNa<iaaNi

N0IIN3AH3INI

3DNVN3INIVH X X X X

AiisNvnnwis

AiniS 1X313 HIM03D

3DVH0IS AHVCIN0D3S

AW0N0D3 IDIiaOHd

1

Nonvzniin o/i

N0IMD3X3

NOTIVUdWOD

M0XD3H3
X X X X X X

DNIWWVH0033 X X X

g CO
01 Ol

CO
w s e i-l

4-1

CO
a

•H co
fa g e

CO

P
C

CO
0

4J
3
O

Ol
a

•H

fa i-l
01
4-1 1—1 XI £ oo y-i fa 4-1

3
C3 cfl CO cfl C •1-1 i—i P^ O
^ •

rf
P ^ 3 cfl 01 4-1 CO 4-1 fa

j fa C CO C o (0 3 •H

g o 1 00 S CO

C
O s

u
01
a.

C

1
i-H
•i-l
4-1

c
c«

Z CD •H CO •r-l 01 o CO P
> 4-1 •- 4-1 4-1 Ol r-4 6

u •H Cfl M s C 14-1 u CO •v CO
4-1 M 01 •H o C 3 c u
a. 01 CO CO « I 01 C CO oo

•H a p i-l o> 01 u 1 o
U o fa u to 01 >% M
O B X P e 3 4-i g u fa
CO 0 ai fa Tl Ol 4-1 01 Ol 00 cfl
1) 4-1 4-1 0 4J o fa 4J c U 4-1

/> Q CO 01 u CO p CO •H X) O
c P^ cso O P^ I-l co ;> c •i-4

/ 6
z 14-1 o CO CO U C/) 4-1 - co •H hJ Ol

M o O •1-1 co fa CO h CO o
M 4-1 oo CO oo Ol 01 h 01 a

/ x 1 w
H ^ u e 0) p c 1-1 i s H i-H

§ > >> g J-l 3 •H £ t- •1-1 CO E -H ja
•H x> 4-1 Ol 4-1 C CO 4-1 6 a) <u u

Z i-H o CO M > <0 u M CO 01 i-i 4-1 CO

fa
8

Ci3 •H t-l ^ o a u 01 oo h 4-1 •H c u
/ <-5
/ *

>] XI 4-1 01 u u 01 4-1 O OJ co CO •H X s CO c a. U 01 a. c u a ^ > 23 C_> r-4 M o fa fa o M fa o CO <
/ H 21 o

Q

I

•i-l
Cfl
>
< i-H C\l C*l <t m \0 r% 00 CT>

fa fa
o o X

<

/ XN3W3^inb3H

CO

H
CO
>H
CO

fa
o
H
H
Z

§
fa
o
u
>

fa ^>
o u
co u

z
h-l
H
as w
fa
o

o
H
H

O
a
w
H

43

ONINIVHX
X

NOixviNawnooa
X X X

aaNaaNadaaNi

NOiinaAHaiNi
X

3DNVN3INIVW X X X X X

maNvnnwis

Ainiaixaia HIMOHO

aovaois AHVCMODSS

awoNODa xonaoaj

Noiivznixn o/i X

Nonnoaxa X!

NOIIVIIcIWOO

inoxoaHO X X X X X X X

ONIHWVaOOHd X

CO
|

r-l
r-l

6
cu

CO CO
T3

CU
CO fa

O

M
M
<i

co CO

CO

CO
4-1

4-1
P
U

l>] co (X, 60 H S CO CU o

pj PM t a
•r-l

TJ
h

CU

C
C
o £ 4J

CO >.
§ o U 4J O CO o •H 01 C u

Cfl O CU (X 4-1 CO > o o
w u 0> T> co B E U CU •W -i-l 4-1

§ / *"N d) 4J cu B -H o 3 a 4J 4J CO

/ "O a. 01 •u cfl H O CO H •1-1 Cfl CJ 3 o / <u o Q u M xi 4-1 4-1 r-l C
/ 3 cu 60.* u o CO P £5 / c ^ co 4-1 O CJ O 1-3 C o c
/ -H A M CU M O 4-1 M PS o
/ *J O Q P* r-l i. 60 S •H

/ c T3 r4 o 60 01 u •u C 0) 4-1
/ o 0) h CO •* C M o c •H 4J cfl

u u w M CO 4-1 •rl i=> 4-1 Cfl r4 CO CJ ^-^ 3 o ja a 4-1 cfl H Pi O
/H co TJ 00 r4 O cfl a o M CO P W iH

/ t-1 § Z o c M •n > P 4J cu a. CJ r-l

/B O H •r-l W 01 O a. £ CJ 6£ <
H I-I £ g y-4 i-i O 01 o O C

/ ^ CO H g cu 0 01 CJ > •rl CU
/ ><j 5H g /•s cfl C OS <J -H r-l

&
CO 4-1 60 CO

/ w co 10 H •H CO 4-1 Cfl 4-1 (fl Cfl u
Z N—' 00 43 CU A CU Cfl P o B u U <u

* OS (^ oo o CJ a 4-> E H B E cu cu O rC

/ % 8 « C
•r-1

H
&4 *

cfl iH
Z 3

•i-l (U
H PS 1 cu > o

M o
4-1
CO

4J
o

1 H M o u
/ H Z s CO

/ 3 / H
g rJ i-H CN en <t u-i v£> r^ oo o\
OS . ,

/ ° o XI pq

/ irawsambsra

C/1

H
CO

1 •<
CO

Z
O os
—i o
H H
< H
2 2
r-l o 3 s >
w os

o
s w
2 >
2 H

H
(14 p
o u
CO u
03 1
O
t* p

cy
a 2
o H 36 H
H

04
04 o
w
H
CO

o
w 8
9 >'
E-(OS

o
i O

M
H

44

SECTION IV

DESCRIPTIONS OF EXECUTIVE, OPERATING

OR MONITOR SYSTEM FEATURES

JOB AND/OR TASK SCHEDULING

Framework for Compilation, Assembly. Loading. Execution, and Appropriate
Combinations

One of the important features of any operating system is
the framework provided for operation of a variety of different types
of jobs or tasks. Most installations require the flexibility to com-
pile, assemble, load, or execute any of their specific problem programs.
It must provide for a series of jobs of the same type (e.g., several
different "compile" requests in a series should not result in reading
the compiler into main storage each time, but neither should the com-
piler remain in main storage continuously thereby idling prime space)
as well as provide for a series of jobs of different types in an appro-
priate variety of combinations (e.g., it may be necessary in some
applications to load, compile or assemble tasks as part of a job whose
major type is "execute"). The operating system should provide the
framework in which the programmer may request any desired sequence of
operations simply and with as few steps as possible. A well designed
framework will reduce operator intervention as well as contribute to
product economy.

Provision for Test Execution

Actual input data may not be available at the time a pro-
grammer is checking out his program. Appropriate characteristics of
this data may be simulated and the data generated for test executions
as an aid in program checkout. Data generators having parameters
controlled by the programmer provide a means of producing this data.
Provisions should be available for program execution using test data.
It may be required by the user to allow for dynamic modification of
data generation parameters. Generation routines may be called by the
problem program. Definite savings in programmer checkout time may be
realized by a well-designed and properly integrated data generation
and manipulation scheme.

Transition from Job to Job

A smooth and efficient transition from one program or job
to the next is an important function performed by an operating system.

45

This function is independent of any specific machine and is charac-
terized by the fact that all relevant operating systems provide it
and most users require it. In some cases, compilers are read in just
before the next job is read in, which is wasted if the job under con-
sideration is not a compilation. This could be an acceptable proce-
dure if a large number of users require compilations. However, in a
case where compilation is done rarely, this data transfer is costly
and unnecessary. A smooth and efficient transition from one type of
job to the next will tend to conserve machine execution time and oper-
ator intervention.

Facility for Running Several Jobs Serially

Some operating systems provide a flexibility whereby the
input, output and computing requirements of several jobs are assessed
at one time and then scheduled such that minimum overall time is uti-
lized. If this is the case, several jobs are looked at before a
schedule is defined. The number of jobs may be an optional parameter.
Assess the degree of overlap allowed while considering the hardware
limits and capabilities. This may affect the computer operator duties.
Estimate the savings in compilation and execution time realized.

Facility for Running Jobs in Parallel

To what degree programs, systems or routines may be operated
simultaneously depends on the objectives of the designer as well as the
capabilities of the particular machine. In any case, a structure must
be provided which will allow several programs or a continuous stream of
jobs, tasks or programs to be run without interruption. Relatively
little general programming development work has been accomplished to
exploit parallel program operation and, as a result, paper proposals
must be analyzed very closely. It is possible to realize savings in
execution time as well as enhance the degree simultaneity of the system.

Utilization of Reentrant Coding in Programming System

Is the reentrant coding technique used within the program-
ming system components (i.e., such that multiple requests will require
only one program copy)? The operating system should provide a struc-
ture for operating programs within the programming system which are
written as common subroutines. It should be realized here that the
hardware must have the capability of multiprocessing to some degree,
otherwise reentrant coding is of no use. Appropriate implementation
of this feature would tend to conserve execution time and contribute
to growth flexibility.

46

Dynamic Scheduling of Program Segments

The decision may be made dynamically as to which program
segment will be executed next. Can the decision be made by the user-
programmer? Is the use of this feature restricted to the operating
system? Suitable addition of this feature to the operating system
will tend to conserve programming time as well as contribute to growth
flexibility.

Inclusion of Externally Programmed Jobs

Provisions should be available for execution of programmed
segments or subroutines originally written for other installations.
Facilities within the operating system for inclusion of externally pro-
grammed jobs will reduce the programming time, compilation time and
tend to increase machine independence.

Run-to-Run Program Parameter Modification

What techniques are available for altering program param-
eters while maintaining continuous program-to-program transition?
Once a program is checked out and considered to be ready for produc-
tion, the user may require several such runs, each with one or more of
its input parameters changed. In fact, it may be convenient to check
out a program (after the initial or first phase of checkout) by set-
ting up a series of runs changing one or more parameters at a time, to
establish or verify its checked out status. Different operating sys-
tems require different rules or techniques for executing these runs.
Appropriate addition of this feature tends to reduce checkout time and
increase product economy.

Parameter Modifications for Dynamic Debugging

Decisions may be made dynamically as to which debugging
component to use as well as allowing modifications to debugging param-
eters. During the production of large programmed system suitable
application of this feature will tend to reduce checkout time and
execution time.

Inter-Program Task Execution in Parallel

Can computational tasks, subroutines or segments be exe-
cuted in parallel if they belong to different jobs? In systems having
a multiprocessing hardware capability, a flexibility is sometimes pro-
vided the user-programmer to submit jobs in parallel. The function of
the operating system is to provide the environment such that jobs may
be done in paralle Important in this area is what limitations have

47

been imposed and for what reasons, For example, is it possible within
the user program to direct the operating system to begin reading in
or reading out certain data portions in advance of their actual need.
Simultaneity and execution time are the measures of software affected
by this feature.

Intra-Program Job Execution in Parallel

Can a single job execute its own internal tasks in parallel
(including computation) within the software system? Tasks may be
executed within a certain job in parallel which would be considered
multiprocessing if the tasks were strictly computation type and multi-
programming if the tasks were both computation and data transfer types.
It may be possible to request that a certain subroutine, such as a
square root routine, be done using a different central processor at
this time even though it would not be needed until later; thus pro-
viding the user with a facility that could make his overall program
run faster. This particular function has many ramifications and in
some cases has been so limited that multiprocessing was impossible
even when the hardware capability was present. This feature will
affect simultaneity, execution time and growth flexibility.

Limitations of Parallel Buffering Operations

What limitations prevail relevant to buffering input/output
operations in parallel within a single job? Among several jobs? Is
it possible within the user program to direct the operating system to
begin reading in or reading out certain data portions in advance of
their actual need, thereby saving overall execution time. Appropriate
application of this feature will affect I/O utilization and simultaneity.

Controlled Use of Common Subroutines

Is there a provision for executive control of common sub-
routines? In a multiprocessing environment more than one central
processing unit may require operation of the same subroutine. The
operating system must ensure each of the central processors a correct
copy of the subroutine as well as providing each processor with its
own temporary storage. The framework for controlling this function
should be flexible enough to handle future central processing unit
additions and associated equipment changes. This feature will affect
execution time and simultaneity.

Provision for Future CPU Additions

What software modifications are required when additional
central processing units (CPU) are added to the system? How many may

48

be added with only minor modifications such as changing numbers in a
table? This feature will affect growth flexibility.

Temporary Storage Availability for Each CPU

Are provisions available for allocation and control of
temporary storage for each CPU? Up to how many? In a multiprocessing
environment each central processing unit (CPU) should have either its
own protected temporary storage area or if main memory is used, a
memory protection feature must be provided for each.

Control of User Program Timed Requests

Does the operating system, monitor and control I/O requests
by timed interrupts? For jobs? For programs? For tasks? Continuous
monitoring is required, in some cases, to provide the user with the
capability of instructing the computing system to perform a particular
function in a certain pre-specified time. In other cases a timed
interrupt can be programmed to provide this monitoring. The requests
could be relative to certain real-time devices, or to a specific
standard I/O requirement, or even to a scheduled maintenance type
request. Recognition of this feature in the operating system will
tend to enhance I/O utilization.

I/O Data Transfer Monitoring

Is control and monitoring of I/O data transfers provided?
What is required of the user-programmer? Within the programming
system, requests for certain I/O data transfers could be controlled
by timed interrupts. In most systems this monitoring and control must
be done by a previously defined and agreed upon schedule of priorities.
This feature will affect I/O utilization and programming ease.

Dynamic Task Compilation Requests

Can a user request and obtain partial compilations of
internal tasks dynamically? How flexible is this feature? Certain
on-line applications will find advantage in the capability of com-
piling on-line queries from remote consoles. Provision for this
feature in the operating system will tend to reduce programming time
and provide growth flexbility.

Automatic Library Program Manipulation

How much of the selection and manipulation of library
program requests are performed automatically by the system? What
is the programmer ^equired to do? Automatic manipulation will tend
to decrease programming time.

49

Scheduling of User's Own Library Programs

A programmed request could result in reading in a program
from the user's own library of programs. This user may have a variety
of different programs which upon his request would be compiled or
executed within his current program, job, or task. Is there a pro-
vision in the operating system for scheduling user's own library of
programs? Suitable application of this feature will affect both pro-
gramming time and checkout time.

Monitoring of User and System Priorities

An initial request containing a low priority, in some
systems, would get this priority raised providing certain prearranged
units of time have passed without the program being executed. These
priorities must be monitored, then, for all programs, both active
and queued. This particular function may depend on other functions
of schedule and control if the scheme used for scheduling and priority
is complicated. What is the scheme for assigning priorities? Does
the system control and monitor jobs and tasks for internal (program-
ming system) and external (user) priorities? What is the difference
between the limits of system and user priorities? In an environment
requiring establishment of priorities, this feature would directly
affect execution time and operator intervention.

Facility for Low Priority Program Upgrading

What facility is available for ensuring that low priority
programs get executed (e.g., periodic increases in priority for un-
executed jobs)? In an environment where many top priority programs
are competing for hardware component use, low priority programs may
find they are being completely excluded. Some means must be provided
to allow running of low priority programs. This feature will affect
time expended in program checkout.

Automatic Rescheduling for Priority Programs

In the event of high priority program requests, the
operating system may be required to perform component rescheduling
and rearranging of the entire computing system status in order to
provide an environment for the execution of the high priority pro-
gram. In other words, it could happen that with suitable resched-
uling and reorganizing of the system status the high priority
program may operate with only minor interruption to the program
which it interrupted. This tends to make a more efficient or eco-
nomical product.

50

System Reorganization Flexibility for High Priority Programs

What flexibility exists for system reorganization under
future changes in the priority scheme? This feature will affect growth
flexibility.

Checking of Program and Data Identification

In order that the correct priority scheduling of jobs and
tasks may be done, the operating system must check the programmer's
identification cards for records, and suitably generate any internal
communication needs for other central processing units as well as
establish logical switches so that appropriate monitoring of the entire
computing system may continue. In addition, many installations require
limited project numbers and insist on formatted or coded priority
requests to ensure the accurate implementation of a particular priority
standard, Is there sufficient internal system identification of jobs,
programs and tasks, and their priorities to ensure proper completion
of priority programs? Suitable implementation of this feature will
tend to reduce time spent in checkout as well as make for a more eco-
nomical product.

Complexity of Task. Program and/or Job Queue Tables

The scheduling of jobs, tasks and programs will require
bookkeeping of certain identification data relative to each. This is
dependent on the level of computation of the priority scheme used. It
is the scheduling function that keeps these tables updated so that the
proper sequence of programs can be executed. Are job, program and/or
task queuing tables used? Is the structure of the queuing table suffi-
ciently uncomplicated to allow efficient restart or path reconstruction
after system failures? This feature will affect checkout as well as
software maintenance.

Dynamic Maintenance of Queue Tables

Are these queuing tables maintained dynamically to continu-
ously reflect the true and current status of the system? This will
tend to decrease the time spent on checkout in addition to conserving
execution time.

Priority Scheme Flexibility for Job, Task or Program

Does the priority scheme provide sufficient flexibility and
complexity for the scheduling and manipulation of tasks and programs
in addition to the priorities scheme provided for jobs? Can the user-
programmer request variable priorities for his programs (within his

51

job) and/or his specific tasks, whether computation or input/output
oriented? It is the flexibility of this particular scheme relative to
the application under consideration which must be assessed. This will
affect programming time and product economy.

I/O ALLOCATION, MONITORING AND CONTROL ,

Initiation of Program Delays on I/O Requests

In some cases, machine language I/O instructions are used
by the operating system but unknown, for the most part, to the user
program. Delaying certain operations until a channel is available or
until a rewind is completed on a magnetic tape are functions executed
within the operating system. There is a necessary balance here between
savings in time and checkout problems for the programmer, on the one
hand; and, on the other hand, necessary flexibility in the use of the
I/O equipment. Are equipment delays for input/output processing con-
trolled and initiated by the operating system? Describe the steps
taken by the user. Appropriate implementation of the feature will
decrease time spent in checkout and also increase efficiency in I/O
utilization.

Continous Interrupt Monitoring for User's I/O .

Does the operating system provide continuous monitoring of
interrupts on user's I/O? Certain real-time equipments in addition to
many standard I/O devices may require continuous monitoring in order
to provide the appropriate response time needed for a specific appli-
cation. To what degree will the operating system provide continuous
monitoring on any equipment contained in the proposed configuration?
This feature may afford savings in programming time as well as effect
efficiencies in I/O utilization.

Flexibility of I/O Devices for User Programs

The operating system may provide certain functions as well
as a suitable framework so that user-programmers will find execution
of data transfers with I/O devices less complicated to specify and
check out. Is the complexity of I/O handling considerably reduced
(for the user) by the operating system? Does the reduced complexity
provide adequate flexibility in I/O device usage for the user? Suit-
able implementation of this feature may decrease programming time as
well as provide for growth flexibility.

52

Future Additions of Standard I/O Equipment

Flexibility is often needed in the design of those systems
having a symbolic I/O addressing capability, so that any particular
installation which needs additional tapes, discs, drums, printers, etc.,
in the future should be allowed this addition with only a small modi-
fication to the operating system. It is common to start with minimum
I/O and wait until more units are actually needed before they are pur-
chased or rented. Does the framework for I/O manipulation provide for
future addition of standard I/O equipment? This feature will affect
growth flexibility.

Flexibility for Changes in Channel Assignments

In a system which provides the capability of assigning I/O
equipments with symbols, the operating system must effect the conver-
sion to channel and unit numbers. This function is essentially inde-
pendent of the machine since it is required by any system allowing
symbolic assignments of I/O equipments. Is the framework for I/O
manipulation sufficiently flexible to allow for future changes in
channel assignment? This feature will affect I/O utilization and
growth flexibility.

Addition of Special I/O Equipment

Installations which at the beginning have special I/O equip-
ment such as certain real-time devices, or plan in the future to add
this type of equipment, do well to have a flexibility built into the
operating system such that these additions may be made expeditiously.
If the framework of the operating system has limitations not conducive
to future predicted requirements, then a very large portion of the
operating system may have to be modified when that equipment is added.
This equipment may include different types of sensors or various types
of long line communication equipment. Does the operating system frame-
work provide for the possibility of future addition of special I/O
equipment not initially required? Appropriate implementation of this
feature will tend to enhance growth flexibility as well as I/O utili-
zation.

Future Inclusion of External Communication Devices

What provisions within the operating system are available
for the future addition of equipment which is necessary for connection
to standard telephone circuit lines? Many installations may eventu-
ally be interconnected with phone lines. Programming system changes
for this future inclusion may be prohibitive. However, the presence
of this feature wou i d provide open-endedness and thereby increase
growth flexibility as well as contribute to the efficient use of I/O.

53

Buffer Area Reassignments for Modifications on Device Speeds or
Capacities

The operating system should be sufficiently flexible to
allow for changes in buffer area assignments required by hardware mod-
ifications or configuration changes due to various needs. Is the
assignment of buffer areas for I/O transfers flexible enough to take
advantage of future hardware changes on standard I/O equipment such as
data transfer, speed increases or increased device storage capacities?
This feature will affect I/O utilization and growth flexibility.

Increases in Simultaneous Channel Capability

Sufficient flexibility may be required to provide for
future increases in the number of simultaneous channels used. Increas-
ing the number of channels available in a system, resulting in more
flexibility for allocating and controlling I/O equipment, may provide
savings not realizable at the time of installation but rather may be
appropriate for future considerations. Will the operating system inter-
nal structure allow for future increases of simultaneous I/O channels?
This feature will affect growth flexibility, simultaneity and I/O uti-
lization.

Decreases in Simultaneous Channel Capability

Sufficient flexibility may be required to provide for
decreases in the number of simultaneous channels used. This capability
should be contained in the operating system at the time of hardware
selection. Will decreases in I/O channel simultaneity make the opera-
ting system overly cumbersome?

Efficient Conversion of Symbolic I/O Assignments

Is I/O symbolically assigned? If so, is the scheme adequate
for the user's need? Suitable addition of this feature will afford
savings in programming time as well as increase efficiencies in I/O
utilization.

Flexible Symbolic I/O Assignment

Is the scheme for symbolic I/O assignment sufficiently flex-
ible to allow for future additions of new and different types of I/O
equipment? This feature will affect programming time and growth flex-
ibility.

54

Monitoring of Entire Computing System Status

The operating system must know, at any time, the status of
all components in order to effectively and efficiently monitor pro-
grams, jobs, or tasks. Does the operating system provide for continu-
ous monitoring of the entire computing system configuration? How?
This feature may afford savings in both programming and checkout time.

Status Updating Scheme Flexibility

Some operating systems provide tables, or a similar technique,
so that status updating may be performed on each and every device or
component in the system. Others may provide status updating for chan-
nels only. Does the scheme implemented allow controlling and updating
of each I/O device or is it limited to channels? This feature will
affect programming time and I/O utilization.

Technique for Allocating Input and Output Data Areas

One function of the operating system is to honor requests
from user programs in the use of scratch tapes, input data tapes, areas
of secondary and primary storage for temporary use. Does the operating
system provide for allocation and control of scratch tapes, temporary
storage areas and input/output data areas? This feature will affect
programming time, I/O utilization and secondary storage.

Suitability of Algorithm for Equipment Scheduling

The algorithm for effecting equipment scheduling must pro-
vide for smooth and efficient operation. The degree to which it may
be changed in order to better suit the user's needs must be assessed.
How is the algorithm for scheduling equipment usage suitable for the
user's needs? Can it be modified easily? Appropriate implementation
of this feature will affect both programming and checkout time for the
user-programmer.

Ease of Controlling Program-to-Program I/O'

The internal structure must be adequate for effecting the
efficient transition of program-to-program or job-to-job control trans-
fers and input/output transfers. The operating system must be suitably
organized to minimize unnecessary machine time losses to user programs.
This feature will affect execution time and operator intervention.

Channel Control and Allocation Flexibility

Certain operating systems while providing reduced program-
ming and checkout time in the form of already programmed I/O functions

55

may incur undesired limits or boundaries for users requiring extensive
use of I/O. Does the system provide flexibility in allocation and
control of I/O channels? This feature will affect I/O utilization and
simultaneity.

Allocation of Input/Output Devices

In some installations it is desired to have the allocation
scheme of symbolic I/O assignment include all actual input/output
devices as well as channel assignments. Does the symbolic I/O assign-
ment scheme allow allocation of the actual input/output device or is
it limited to channel assignment? This feature will affect I/O utili-
zation and secondary storage.

Remote Console Monitoring and Control

Remote consoles require immediate attention. Incoming data,
messages and programs require the operating system to react in some way
so that appropriate storage of this data, message or program may be
saved for some time later on when execution may take place. Is contin-
uous monitoring and control of remote console devices provided? This
feature, suitably implemented, will allow savings in execution time as
well as enhance I/O utilization.

Queuing of Remote Console Messages

Does the operating system store program, data and/or mes-
sage queues from remote console devices? What functions must be per-
formed by the programmer? How is the programmer provided access to
data stored by the operating system? What options or controls may be
placed on the operating system relative to these functions? Suitable
application of this feature may decrease programming time and machine
execution time.

Addition of Remote Console Equipment

How complicated are the changes required for future remote
console device additions? Is it possible to add more of the type of
device already proposed? Up to how many? What changes must be effected
in order to add console devices with more desirable features or other
increased capability? Assess the limits and boundaries of the technique
within the operating system relative to future changes. In addition,
these limits and boundaries must be determined in order to determine
their effect on primary and secondary storage assignments. Growth flex-
ibility is the primary measure of software capability affected by this
feature.

56

USER AND SYSTEM STORAGE ALLOCATION

Technique for Program Segmentation

Many computing installations sooner or later face the need
for execution of a large program. By large is meant that the size of
the program instructions or statements is larger than available memory.
Because of this, the programmer must segment his program into portions
of program and data which will fit into main working memory. In those
installations which do not provide a segmentation scheme, the program-
mer must himself decide what divisions he can make within the problem
and write pieces of program accordingly. Of course, some programs can-
not be segmented in this way and a more sophisticated segmentation
scheme must be provided. For instance, in FORTRAN, some computing sys-
tems have defined and implemented a chain in which each segment of the
program is a link and any link can call any other link. The technique
of this program segmentation scheme implemented must be assessed as to
its suitability to the application being considered. A well-designed
scheme could provide more efficient utilization of secondary storage
as well as provide a more economical product.

Manipulation and Activation of Overlays

A much more flexible and efficient computing system will be
realized if the control and activation of overlayed segments is per-
formed within the operating system. In some systems it is only the
compiler system which will allow manipulation of segments. In case
this manipulation and activation is provided within the operating sys-
tem, all of the software components may then be provided the flexibil-
ity of segmentation. Does the operating system monitor and control the
manipulation and activation of overlays? Appropriate implementation
of this feature will affect secondary storage and growth flexibility.

Scheme Flexibility to Include All Storage Devices

What computing system storage devices in the proposed con-
figuration are included in the segmentation scheme? Which ones are
not? Inclusion of the scheme for segmentation with all proposed stor-
age devices will tend to conserve programming time as well as provide
efficient usage of secondary storage.

Facility for Protecting User's Data or Program

Some systems may provide a hardware feature for protecting
each program segment whether it be data or program. In other systems
a software scheme is implemented. This is necessary since a checked
out and running program must be protected against programs in the

57

debugging stage. What facilities are available for protecting the
user's data segments and/or program segments? These must be described
for both primary and secondary storage. Implementation of this fea-
ture will affect programming and checkout.

Effectiveness of Relocatabilitv Technique

Different relocatability techniques require implementation
at different levels. For example, some techniques require calculation
of symbolic relocatability at compilation or assembly time. Others
are handled strictly by the loader program. Some program segmentation
techniques require implementation through the compiler or assembler
since insufficient hardware features are available in the configura-
tion. What portions of the relocatability technique are performed at
assembly time? At program loading time? By the operating system?
Appropriate hardware features together with effective software scheme
for relocatability will tend to reduce programming time as well as
contribute to smooth and efficient checkout.

Provision for Absolute Address Assignment on Debugging Output

Some relocatability schemes make it almost impossible to
determine exactly where segments of program or data resided in core
during an already executed program run. In order to save execution
time and contribute to efficiency during checkout a provision should
be implemented which will allow programmers to determine exactly where
segments of program or data resided during execution. Are there pro-
visions for furnishing debugging output with the actual memory loca-
tions used by each instruction during execution?

Limitations on Reconstructing Program Paths

In some programming systems it is required to insert steps
in the program in a very well-specified way so that path reconstruc-
tion may be performed. What pre-execution steps must be taken to
ensure complete reconstruction of program paths during debugging oper
ations? The actual steps which must be taken by the programmer must
be assessed, since it may be apparent that these steps are an unneces-
sary burden relative to other computing systems.

Ease of Monitoring Storage Requests and Returns

Most storage allocation schemes allow user-programmers to
request blocks or units of storage and in some similar way allow for
these same units to be returned. It must be assessed how much of the
allocation processing requirements must be performed by the user-

58

programmer? Efficiency in this area will tend to reduce programming
time as well as provide efficient utilization of secondary storage.

User Flexibility of Requests and Returns

Does the storage allocation scheme extend to secondary stor-
age? Are similar requests and returns useful for these secondary stor-
age areas? What steps are needed for requesting and returning of pri-
mary and secondary storage areas? A well-organized and flexible scheme
allowing the user use of the entire machine configuration will tend to
make the programming task easier and therefore take less time. Also,
efficient utilization of secondary storage may be effected by appro-
priate implementation of an organized technique.

Availability of Storage Map and Assignment Tables

A well-organized scheme for storage allocation will include
a map of primary and secondary storage probably in the form of some
type of table where the programming system controller may continually
update and maintain status for user assignments and post analysis. In
some systems this table, or whatever, is available to the user-program-
mer and as such, allows him greater flexibility. Is the map of primary
and secondary storage and table of user assignments readily available
to the user-programmer? This will afford him efficiencies which will
tend to decrease his programming and checkout time.

Data Arrays and Table Relocation Flexibility for Priority Requests

Can existing tables and arrays of data be suitably relocated
for high priority programs? How does each user-programmer know where
his data is during execution? During debugging? Suitable implementa-
tion of this feature will tend to ensure the compilation or execution
of high priority programs which would otherwise require operator
intervention.

Effects of Priority Requests on Segmentation

It must be assessed here whether the operating system does
indeed save the appropriate machine conditions, under high priority
interrupt, such that the interrupted program will not have to be com-
pletely redone. What effects do priority programs have on program
segmentation? Appropriate saving of completed work will effect sav-
ings in execution time.

59

Manipulation of Job Segments To and From Secondary Storage

Does the operating system manipulate and control the trans-
fer of job segments to and from secondary storage? What is required
of the user during execution of his program in order to effect this
manipulation and control if not done by the operating system? What
internal communication switches or tables are affected by priority
requests during program segmentation operation? Assess the flexibili-
ties afforded the user of the segmentation technique in this area.
This feature will affect programming time, execution time and secon-
dary storage.

Similarity of Job Segment Technique to Library koutine Manipulation

Is the segmentation technique similar to and compatible
with the technique used for library routine manipulation? Appropriate
implementation of this scheme will tend to decrease programming time
as well as contribute to growth flexibility.

Buffer Area Determination for I/O Assignment

Does I/O assignment by the operating system include buffer
area determination? That is, does the operating system provide deter-
mination and allocation of buffer areas for each I/O request? How is
it done? It must be assessed whether this allocation is done well
enough to effect efficient data transfers. This feature will affect
I/O utilization as well as product economy.

Algorithm Suitability for Providing Each of Several Jobs With Fast
Buffers

Are buffer areas reassigned when the number of programs
increases? That is, when the number of programs using I/O increases,
the operating system may cut down on each program's block size for
buffer area assignment. Also, is the buffer area assignment reappor-
tioned when the number of programs becomes smaller? Appropriate imple-
mentation of this feature will affect the efficiency of I/O utilization
as well as provide savings in execution time.

Flexibility of User Requests for Buffer Areas

Can the user effect buffer area assignment if needed? That
is, in the case that the operating system fails to provide sufficient
flexibility in buffer area assignment, how difficult is it for the
programmer to effect changes in buffer area assignment? This feature
will provide assistance in growth flexibility.

60

Effects of Changing Buffer Area Requirements on Allocation Scheme

What effect does the changing of buffer area requirements
have on the allocation scheme? Is less space allowed the user-pro-
grammer? Can the allocation scheme still be used when the programmer
is effecting his own buffer area assignments? This feature will affect
programming time and the use of secondary storage in addition to af-
fecting product economy.

Flexibility of Allocation Scheme to Machine Configuration Modification

Is the allocation scheme sufficiently flexible to take
advantage of hardware configuration changes such as the addition or
deletion of memory modules? More secondary storage? This feature
will affect programming time and secondary storage?

Buffer Area Association Problems with Increased or Decreased I/O
Configuration

Can the buffer area assignment scheme be easily modified
to take advantage of any increased or decreased I/O equipment changes
made to the computing system configuration? Describe the steps re-
quired for modification in cases where configuration changes may be
required. In cases where configuration changes are required but
suitable flexibility in buffer area assignment is not forthcoming,
additional programming and checkout time will be used to effect the
required change.

Job. Program and Task Initialization

Does the operating system provide initial system status
setup for jobs, programs and/or tasks? Initialization not done by
the operating system must be done either by the programmer or by the
computer operator. Required initialization must be assessed by looking
at the requirements of each hardware component. After that, it must
be determined who should perform the initialization - the programmer
or the operating system. This feature will affect programming time,
operator intervention.

Component Initialization Facility (Tape Rewind. Label Checking, etc.)

Are specific I/O components initialized or put on ready
status by the operating system (e.g. tape label checking, deleting
identification records, selecting proper operating modes, etc.)? This
feature will affect programming time and operator intervention.

61

Flexibility of Running Combinations of Foreground and Background Jobs

Can a mix of foreground and background jobs be executed?
Describe the limitations. (Note: In a multiple-user computing system,
foreground programs are those real-time programs requested by on-line
users. They usually require small pieces of time. Background programs
are those programs requiring much more time, possibly for long com-
pilations, which are run in the background as lower priority type
programs.) Available time on the computing system will be more ef-
ficiently used by appropriate mixing of foreground and background pro-
grams thereby enhancing the product economy.

Flexibility in Selection of Combinations of Debugging Operations

Can appropriate combinations of debugging operations be
selected to handle predicted checkout needs? It may be required by
certain applications to trace small sections of a program and effect
program dumps of portions of the program in suitable combinations.
Suitable implementation of this type of request will tend to reduce
checkout time as well as afford savings in execution time.

Suitability of Commands for Debugging Operations

Are the debugging operation commands adequate to provide
requests for snapshots, partial dumps, segment dumps, traces and inter-
mediate results? Suitable application of this feature will tend to
reduce checkout and execution time.

Allocation of Storage for Output of Snaps. Dumps. Traces and Intermediate
Results

Does the operating system monitor and allocate storage
for snapshots, partial dumps, segment dumps, traces and intermediate
results? What is required of the programmer when utilizing these
debugging operations? What is provided by the operating system?
Suitable implementation of techniques to assist the programmer will
provide savings in programming and checkout time as well as allow
more efficient use of secondary storage.

LIBRARY MANIPULATION AND MAINTENANCE

Flexibility of Framework for Library Access

The framework within the operating system for the manip-
ulation and maintenance of library routines must be flexible. It

62

should be sufficiently flexible to allow the addition of new subroutines,
subprograms or portions of the programming system, modification to those
routines or even complete deletion. Some commonly used routines require
more input parameters than others, also some programs require a sep-
aration of the actual instruction code from the data. Provisions
within the structure or framework of the operating will tend to de-
crease maintenance and operator intervention.

Flexibility of Calling on Library Routines During Compilation. Execution.
Etc.

Is the structure sufficiently flexible to provide for
calling library routine during compilation? Execution? Both? What
specific flexibilities are provided in the framework of the operating
system which allow for easy access to library routines? Does the
operating system communicate with library routines using similar
linkages as are used with compilers and other large software packages
within the system. This feature will affect operator intervention,
maintenance and ease of programming.

Instruction Linkage Between Routines

The method used for linking various types of routines,
subroutines, and library programs should be sufficiently open ended
to include the possibility of future additions. What is the method
used for linking user programs with library routines? With compilers
or assemblers? Flexible and yet uncomplicated linkages will tend to
reduce compilation and execution time.

Requirements on User-Program for Instruction Linkage

Identify the steps required by the user in order to construct
linkages to the various types of library routines. This feature will
affect programming and product economy.

Reading Routines Automatically Provided

Are the library routines automatically read in and incor-
porated into the user's program? If not, what must the user do? If
they are provided automatically, what options are available to the
user? Suitable application of this feature will affect programming
and product economy.

Repeated Requests for Same Library Routine

Are appropriate linkages set up by the system so that more
than one request for the same library routine will produce only one
copy in the requested program? What flexibilities are available in
this area? This feature will affect product economy.

63

Library Routine Data Array or Table Needs Provided

Many library subroutines must be given certain input para-
meters or data in order to operate. This data must be provided by the
system or by the user. What library routines need separate data ar-
rays or tables? For each, describe how these items must be provided.
By whom? Suitable implementation of this feature will tend to decrease
programming time and maintenance.

Monitoring Utility Routine Control '

Some library routines require I/O channel or device control
in monitoring. It must be assessed where this control or monitoring
is done. That is, within the operating system or by the user. Are
there any requirements for control or monitoring on any of the library
routines? Who performs the monitoring in each case? What affect does
this have on the user program? This feature will affect programming
and I/O utilization.

Standard Scheme for Transfer To and From System Routines

Is there a standard scheme for control transfer between
the library routines and the operating system? Describe it briefly.
Must the user know how to transfer control or is this handled for
him? This will affect programming and I/O utilization.

Linkage Substitution for Program Segmentation

Linkages between the segments must be generated as well
as manipulated by the programming system. What requirements are
placed on the user for affecting program segmentation of library
routines? This will affect programming and execution time.

User Requirements for Library Routine Segment Manipulation

What steps must be taken by the user in order to affect
library routine segment manipulation? Does the system provide linkage
substitution in case library routines require program segmentation?
Clearly distinguish between functions performed by the programming
system and those performed by the user programmer.

Provision for Updating Library Easily

Once a library has been generated and its manipulative
routines have been checked out, it should be fairly easy to use. Also,
it should be fairly easy to maintain; that is, to modify existing
routines, add new routines, or delete old ones. What provisions are
included for allowing the maintenance and updating of library routines?
Can user programs do it easily? This will affect maintenance.

64

Non-scheduled Library Maintenance

In case a new library routine fails in some way, what pro-
cedure must be performed to replace it with the old one or effect a
suitable modification? Can this be done on-line? In either case, how
is continuous system operation maintained? This will affect mainten-
ance and execution time.

Suitability for Operational Reliability

Are there any special features available for maintaining
operational reliability of library routines? Describe each briefly
along with a reason and the extent of the affect on reliability.
Consideration should be given library routines which require input
data within certain ranges or parameters of specific values. What
happens to each of the routines in case the range of input data is
exceeded or the wrong parameter is entered? This will affect check-
out and maintenance.

Maintenance Jobs Treated as User Programs

Can library maintenance jobs, programs or tasks be sub-
mitted to the operating system as any normal user program? If so,
what scheme or technique is used to insure a program obtaining the
desired library routine version? If not, what special action or
special operating systems are needed? Appropriate application of this
feature will affect maintenance.

Completeness of Routines for Library Manipulation and Maintenance

Does the operating system include the utility routines
needed to both manipulate and maintain the system library? If not,
what is needed? Will these be supplied by the vendor or by the user?
This will affect growth flexibility and maintenance.

EDITING OF USER AND SYSTEM PROGRAMS

Listings for Program Post Analysis

Facilities must be provided programmers for analyzing re-
sults of trial runs. Many of these facilities should be incorporated
in the operating system so that the programmer may have sufficient
information to reconstruct the events and paths occurring during the
trial run. Notes are provided to programming system users to com-
municate between the various programming system components such as
compilers and other large software components. Naturally, this depends

65

on the design and implementation of the operating system. What.,listings
are provided for post analysis by user programmers? This particular
feature will tend to decrease checkout time, if suitably implemented,
as well as decrease execution time in the form of re-runs in case ad-
ditional information is needed which is not available on a printout.

Event Oriented Output for Ease of Reconstruction

Events occurring during trial runs may indeed assist the
programmer if they are clear and completely defined. Are the messages
produced by the operating system oriented toward distinct and well
defined events so that accurate reconstruction may be performed?
Adequate and flexible implementation of this feature will affect time
spent in checkout.

Contiguous Output Message Listing

Messages may be produced by several pieces of software
within the programming system. That is, the compiler may produce
messages relative to the compilation process, inappropriate use of
assembly language may produce output messages, as may each of the
different software components. Does the operating system provide a
contiguous and unambiguous output message listing so that the pro-
grammer may easily reconstruct what happened during a trial run? This
will affect programmer checkout time.

Suitability of Message Scheme (Descriptive or Numbers only) for Event

Recording

In some message output schemes numbers only are produced
and used as reference to a document which describes the intention and
the meaning of that message. Other systems provide the complete mes-
sage on the output listing. Advantages of the number only system are
in savings of computer time and space for the message during processing
as well as output printing time. However, the complete description
contained within the output listing is much more convenient for the
programmer to use during checkout. Which scheme is more advantageous
will depend on the particular application being considered. Does the
output message consist of a description? Is it complete within itself
or is a further description needed from an associated document? Does
the output message consist of a number which refers to a description
in some associated document? If so, is the document available? The
completeness of each message must be assessed also in order to deter-
mine the effectiveness of the overall scheme. This feature will af-
fect programmer checkout time and machine compilation time.

66

Messages Compatible With Other Software Components

Is there an organized scheme within the software programming
system concerning the production of the message descriptions so that
each term has a distinct meaning? Each message must be assessed as to
whether there is a conflict of meaning. Some programming systems,
during production, have been separated such that separate groups de-
fine output messages relative to compilers, others specify output
messages relative to report generators, etc., and very little is done
to coordinate message compatibility across the range of software com-
ponents. This will affect programmer checkout time in attempting to
assess just what the meaning is of each message and also will affect
machine time since re-runs may be required in order to determine what
the meaning was.

Provision for On-Ljne Error Correction

Does the list of output messages include a facility for
notifying the operator immediately when an on-line correction may be
made instead of aborting a program? On some computing equipments a
ready status must be received from some components before data trans-
fers may be effected. If the ready status is not received by the pro-
gramming system two things can occur: 1) the job can be aborted and
2) the programming system could provide a message on-line to the
operator such that he may then ready the status of the component in
question and the job continued normally. Each component must be
assessed separately relative to its needs for on-line message output.
This will affect operator intervention as well as programmer checkout
time.

Flexibility of Machine Language Patching

Patching machine language object code can save compila-
tions. Trial runs may be made with patches rather than with recom-
pilations thus saving machine time. What provisions are available for
making machine language patches? Can they be made easily to the
object program? This feature will affect programming time and tend to
reduce compilation time.

Sufficient Information for Adequate Path Reconstruction

Does the output message listing contain sufficient in-
formation within itself to adequately reconstruct the program path?
If not, what else is needed? What is required of the programmer in
order to obtain this information? This will affect both programming
time and checkout time.

67

Flexible Code Substitution for Debugging Runs

The operating system should provide the code substitution
for each debugging software package available, This allows for cen-
tralized control which makes for efficient checkout. Does the opera-
ting system provide, efficient code substitution suitable for available
debugging schemes? This feature must be assessed relative to each
debugging scheme provided in the programming system. This feature
will affect checkout time and execution time,

Flexibility of Formating Debugging Options

Are provisions available for making compilations with or
without debugging aids? What modifications are required by the user
to delete debugging aids from a program? That is, if a program has
been run and structured with debugging aids is it a simple process to
delete use of these debugging aids? Describe relative to each de-
bugging routine. This will affect checkout and execution time.

Contiguous Listing of Recorded Errors

Machine errors recorded by the operating system should be
listed separately such that hardware maintenance personnel may be
able to perform their function without searching through long listings
of programs, A separate listing should be provided but with the
machine errors in a contiguous and time ordered occurrence. This will
affect maintenance,

Monitoring of Out-of-Range Quantities

Out-of-range quantities such as data calculation overflows
or arithmetic operation violations are sometimes monitored by soft-
ware within the operating system to assess their effect on the program
being checked out. Are there any provisions for monitoring and editing
of out-of-range quantities during debugging? This will affect program

checkout,

Recording of Out-of-Range Quantities

Data calculation overflows or arithmetic operation vio-
lations must be recorded for programmer reconstruction. Are arith-
metic violations and data calculation overflows detected and recorded
during program execution? During debugging? Are they also recorded
during compilation in those cases where compilation calculations may
occur? This will affect programmer checkout time and execution time.

68

FACILITY AND USER TIME ACCOUNTING

Monitoring Job and Program Timing

Some installations require each job run in the facility
to be accounted for separately under separate projects. Others re-
quire, within a job, that certain programs be timed separately with
control afforded both to the operating system and to the job specifier.
Does the operating system perform monitoring of job timing for both
user and facility? In installations requiring the accounting of job
and program training, absence of this feature will require the user to
implement it himself. This will affect programming and checkout time
as well as machine execution time since without it the installation
must stop operation of any job, account for the time and then start
the next one.

Maintenance of Components Used Table

Is a table maintained of timing information of each hard-
ware component on the computing system? If not, is one maintained
for any of the components? Which ones? Identify each and describe
specific accounting of time. This will affect programming time and
product economy.

Prnvisinn for Generation of Statistics

Is there a framework in the operating system which will
allow any specific installation to specify what statistics they feel
are necessary to generate? Is it open ended or are there only certain
specific statistics generated? Statistics are useful to a variety of
people within an installation and can effect the amount of time ex-
pended on overhead functions. If the framework exists then program-
ming time may be saved in those installations requiring it. Some of
the statistics which may be generated are listed below. Savings in
overhead functions may be realized knowing how often certain functions
are used.

1. Number of Secondary Storage Transfers—Any method of
assessing the number of secondary storage transfers
made will allow maintenance personnel to assess the
overhead time spent by segmenting programs or data in
large, medium or small pieces. This will allow the
maintenance personnel to suitably adjust the size of
programs or data.

6 9

2. Number of Storage Accesses—Also affecting 1. above
may be the number of actual accesses made as opposed
to the number of transfers made; that is, if a large
number of programs access the secondary storage for
only a small number of distinct data items transferred
then this will affect the way the operating system
should make these data transfers

3. Number of Jobs, Programs or Tasks Executed--The number
of times certain tasks or programs within a job are
executed may be required in some real-time installations.
Gathering of this type of statistic controlled by the
job specifier would be especially useful in post analysis

4. Frequency of Utility Routine Usage—Placing library
routines on a magnetic tape in an order which will
tend to save execution time waiting for tape library
routine transfers is a well known problem. This
statistic would allow the installation to assess the
number of times each library routine is used and there-
fore allow maintenance personnel to place these routines
appropriately on a library tape to minimize execution
time in waiting for library routines to be read in.

5. I/O Channel Time Used--In installations where several
channels are available and any one may be used to con-
nect the central processor with certain I/O devices,
it would be desirable to know the time that each of
those channels were connected and performing transfers.
This statistic may be generated by software and allow
future additions or deletions of channels to increase
I/O utilization efficiency

6. I/O Device Timing Used--Appropriate recording and
maintenance of statistics relative to I/O device usage
would allow for assessing the need for additional I/O
devices both in increasing the number of each type of
device and in reducing the number of each type of I/O
device.

7. Others—Are there any other statistics that may be
generated? Describe each briefly and relate what
specific purpose may be served by its inclusion.

70

Execution of Job Abortive Procedures

Once the decision has been made to abort any specific job,
it will be wise to include all the reasons used for aborting it as
well as the conditions which prevailed at the time of the abortion
procedure. Does execution of job abortive procedures include suf-
ficient data to determine exactly what happened? Describe what in-
formation is included in the job abortive procedure. This will affect
programmer checkout time and execution time.

Computing System Components Status Updating

Is an internal status kept relative to each computing
system component? Is there means for continuously maintaining the
status of each computing system component? Is this status accessible
by the user program? Can the user program utilize this data to effect
His own scheduling of components? Must this be done through the
operating system?

Recognition of Component Sharing by Jobs ,

Does the scheme for maintaining components status and
timing recognize and reflect the sharing of components by jobs, pro-
grams or tasks? That is, does the status include the possibility of
this component being used alternately by one program, two programs,
etc.? How does one program know when a component is being used by
another program? This will affect I/O utilization.

Maintenance of Operations Log

An operations log is useful for maintenance personnel in
order to assess what may have happened to either hardware or software.
Also, it is useful during checkout for programming personnel. Is an
operations log maintained? Describe the items which may appear on it.
Is each component represented?

Suitability of Log to Management Needs

Does the operations log contain sufficient information to
assess what jobs used what components, and for how long? In a multi-
processing environment it would be necessary to know to what degree
the processors were being shared and what percentage of the time were
the processors used in parallel. The capability to assess the degree
of overlap by each of the components will tend to increase the ef-
ficiency of I/O utilization as well as providing a method for assessing
the degree of simu1 t-aneity used.

71

Flexibility of Log for Predicting Future Configuration Changes

Does the log contain sufficient information to facilitate
predicting future estimates of configuration changes such as increases
or decreases in numbers of I/O devices or channels? What additional
features are provided?

Separate Time Records for System Components

Is a separate time record provided for each major com-
ponent of the hardware system? Describe each different method briefly.
Is this time record part of the operations log or is it a separate
record?

Sufficient Details for Component Timing

If no individual component timing is performed, are there
sufficient details maintained in the operating system for future ad-
dition of this capability? Is the structure within the operating
system flexible and sufficient such that future requirements of com-
ponent timing may be added? This feature will affect growth flexibility.

GENERATING AND UPDATING THE MASTER SYSTEM

Ease of Modifying Individual Programs

Individual components of the programming system must,
periodically, be altered or deleted. Also, appropriate additions may
be made to the overall programming system of newly developed or ac-
quired software components. In any installation, where development
of these software components is a continuing activity, it must be easy
to make these types of modifications. What features are available so
that individual utility programs may be modified or added easily?
Programming time expended as well as maintenance may be affected by
this feature,

Flexibility of Organization Scheme for Making New Masters

In most installations reorganization of the component pro-
grams, subroutines and software components must be made periodically
to maintain efficient use of the programming system. Library rou-
tines must be reorganized or placed in different locations such that
the most common used routines are closest to the beginning of the tape.
Is the organization of the master system sufficiently flexible so that
new master tapes may be made up with individual programs contained in

72

a completely different sequence? Describe the flexibilities availa-
ble. This will affect product economy and maintenance.

Suitability for Updating Compilers. Assemblers. Etc.

Does the system provide for easy updating and maintenance
of compilers and assemblers by system programmers?

Maintenance of File Systems

Some installations require generation and maintenance of
many large file systems. Manipulation of these file systems may best
be done in the operating system. Programmer time may be saved in
addition to checkout time by the appropriate manipulative functions
being resident in the operating system. Are provisions available for
maintaining and updating users files or file systems?

Updating File Directory Tables

File systems are often organized around directories which
make the alteration of items in the file easy to effect. Are direct-
ories of files or file systems maintained by the operating system?
Describe the flexibilities available relative to this area. Pro-
gramming is saved in addition to checkout time by suitable implementa-
tion of this feature.

Common Access of Often Used Files

Does the framework of the files or file system maintenance
allow for easy access to these files during execution? During com-
pilation? By other appropriate major software components? In some
systems files must be accessed during compilation in order to save
programming and checkout time. What steps are needed by the pro-
grammer in order to make these files available during execution and
during compilation? Can the programmer use files generated for some
other program without modification?

Compatibility of File System with Compilers, Assemblers. Etc.

Is the file system structured such that the programming
system itself may utilize the advantages of information storage and
retrieval through the file system? If the structure is sufficiently
standardized then any component (compilers, assemblers, etc.) may
access the same file thus saving regeneration of the file for each
software component. Suitable implementation of this feature will
tend to decrease p - gramming and checkout time.

73

OPERATOR AND OFF-LINE COMMUNICATION'

Organized Interface with Off-Line Computers !

Many installations load input jobs or tasks off-line as
well as print or punch off-line to conserve time in the main computer.
The off-line device is a small computing system capable of a variety
of data processing functions. Some logical interface and agreement in
terms must be established to effect a transmission between the com-
puters. An organized and standardized data configuration in command
interpretation must be obtained if accurate and efficient job pro-
cessing is to be realized. At the interface between the operating
system and the off-line computers, are the commands organized and
suitable for efficient data transfers? This feature will affect
operator intervention and I/O utilization.

Utilization of Similar Terminology

Terminology used within the design of the main computer's
operating system should be the same as that used within the peripheral
computing system. Use of dissimilar terminology may require unneces-
sary data conversions or other instructional coding conversions in
order to relate proper meaning. Is similar terminology used in com-
munication by both the on-line operating system and the off-line
computing system or systems? Appropriate implementation of this
feature will tend to decrease execution time as well as operator
intervention.

Standardized Data Configuration

It must be determined what data conversions are made at
the interface and also the exact nature of these conversions in order
to determine their affect on either system. There should be a stan-
dardized data format designed with the two systems in mind. Does
either system require unnecessary data conversions? Is there a
standard data format? This feature will affect execution time as well
as operator intervention.

Use of Standard Commands

Commands used by either system for their own internal
purposes or for purposes of communication with the other system should
be designed in an organized manner. Are the commands used between
systems standardized in this manner? Each command should be described
and an explanation of its contribution to the overall installation
should be included. An organized design of the command structure will
tend to decrease execution time and operator intervention, as well as
increase the degree of growth flexibility.

74

Communication with Other Computer Modules

In cases where computing system hardware provides flexi-
bilities for addition of other central processing computer modules,
flexibility in the operating system should be provided. In some cases
future installation requirements will specify connection to other
complete computer systems. The operating system should provide flexi-
bility for communication to any of these types of system for which
there exists a corresponding hardware flexibility. Is there a pro-
vision for communicating with other on-line computers or other computer
modules in this system? This feature will affect growth flexibility.

Open Endedness of Communication Scheme

Is the communication scheme used sufficiently open ended
to provide for future additions of computer modules, on-line computers
or off-line computers, In some cases, a system may provide the com-
munication but does not allow a large enough number of the different
types of devices to accommodate expected future additions. This num-
ber muse be decided upon by a user evaluator team and the operating
system must be assessed in order to determine whether the system will
accommodate this number. This feature will affect growth flexibility.

Allowance for Reflecting Equipment Configuration Changes

Expected future changes in any installation may require
additions or deletions of equipment components in either the on-line
computing system or in the off-line computing system or systems. Is
there sufficient flexibility to allow for changes in the configuration
of either computing system? Determine the actual upper and lower
bounds for each type of equipment proposed in the configuration as well
as describing upper and lower bounds for any other types of equipment
available but not proposed. This feature will affect growth flexibility.

Controlling Communication With Subsystem Monitors

Has a master-slave relationship for controlling communi-
cation been established between the on-line operating system and any
sub-system monitors? Does this relationship include the possibility
of future additions of more off-line operating systems? This feature
will affect growth flexibility and operator intervention.

Generation of Manual Operator Commands

The operating system should have the provision for genera-
tion of commands to the computer operator in order to relate specific
manual operation instructions, Does the operating system generate
commands for the manual operation functions? This feature will affect
operator intervention.

75

Console Communication of Requests and Messages

Appropriate communication of requests and messages between
the operating system and the computer operator should be established.
Are the commands to the operator communicated to a central console
easily accessed by the computer operator? Can the operator request or
provide answers to the operating system through that same central
console? Is sufficient information provided to the operator for each
message? Does the operator have sufficient answer-requests to keep
the operating system aware of the hardware status? This feature will
affect operator intervention.

Updated Record of I/O Device Assignments

The operator must have sufficient information available to
him so that he may do his job quickly and accurately. I/O device
assignments are one of his primary responsibilities and he must know
what the operating systems assignments are, Does the operator have
access to an updated record of I/O device assignments? This will
affect operator intervention.

ERROR RECOGNITION AND SYSTEM RECOVERY

Continued Operation During Limited Failures

In some installations, the operating system ceases opera-
tion when a component becomes inactivated. This will occur no matter
whether the component in question is being used or not. It is impor-
tant to some installations to continue operation even though certain
components become inactive. Operating systems must monitor input/
output components in channels to continually ascertain whether fail-
ures have occurred. This function could be sufficiently flexible so
that a failure of a device not used or needed by the particular pro-
gram now running would not affect that program. Further it may be
that several of this device type are available, and switching to the
use of a different one could allow the program to continue. For
example, if several units are available as scratch tape the operating
system could (under certain circumstances) switch to another if one
fails. Does the operating system provide for continued operation
when limited failures occur on components not currently being used by
this job? To what extent can this occur? Describe the extent rela-
tive to each component proposed. This feature will affect operator
intervention as well as execution time.

76

Switching Like Components to Maintain System Operation

Does the operating system automatically substitute a simi-
lar unused I/O device for one which has failed? Was system operation
interrupted during this switch? This feature will affect execution
time, I/O utilization and operator intervention,

Recognition of Errors Relative to Each Available Component

In the case where individual components do fail and are
being used by the particular job program or task being processed,
errors should be completely described relative to computing system
status. Are errors identified relative to the individual component
or device that failed? This will affect execution time, I/O utiliza-
tion and operator intervention.

Detection of Programming Errors

The operating system must continually detect errors made
by user programs such as incorrect input/output request specifications
as well as hardware system errors. Also these errors must be recorded
appropriately for programmer post analysis, reconstruction and debug-
ging activities. Are programming errors detected during program
execution? If so, identify each as to one of the following types:

1. Incorrect I/O Requests—This feature will affect
checkout and I/O utilization,

2. Request for Equipment Already In Use-- This will affect
execution time and I/O utilization.

3. Incorrect Data Formats—Detection of this type of
error will tend to reduce checkout time as well as
enhance the efficiency of I/O utilization.

4. Incorrect Instruction or Formats—This feature will
affect checkout and execution time.

5. Unstable, Iterative or Non-convergent Processes—This
will affect checkout time and execution time.

6. Software System Violations—The operating system may
indeed detect certain violations defined and required
by other software component packages such as compilers.
A structure should exist within the operating system
to allow for detection of these types of errors. Pro-
vision for detection of this type of error will affect
programming and checkout.

7. Other Types--

77

Restart Procedures After Equipment Failure

Some organized and appropriately designed procedures should
exist for restarting after various types of equipment failures. One
way of course is to re-run the entire tape, or whatever, of jobs.
However, this may be very inefficient in machine usage. Does the
operating system have a capability of restarting a system after an
equipment failure has occurred, without completely re-running a batch
of jobs? Describe briefly. This feature will affect execution time.

Frequency of Periodic Dumping Technique for Restart

If the system provides periodic storage dumps as a method
of easy recovery, what is the period? What happens when failure occurs
during data transfer of this storage dump? Periodic saving of entire
primary and secondary memory status on magnetic tape is a rather com-
monly used technique in this area. At any rate, storage on some
secondary storage device is usually required in cases where restarting
is desired. This feature will affect execution time and secondary
storage.

Amount of Storage Used by Dumping Technique

What amount of primary and secondary storage is required
to utilize this dumping procedure? That is, there is usually a pro-
gram resident in primary storage. What is its size? Also, secondary
storage media must be provided in order to store the memory map or
maps. Determine the limits, etc. This will affect execution and
secondary storage as well as I/O utilization.

Monitoring Violations on Hardware Limitations

Specific violations, such as magnetic tape running off
the reel, are sometimes monitored by operating systems to provide
additional assistance to the programmer. What specific violations
of hardware limits are monitored by the operating system? Identify
each and describe its effect on the system as well as requirements
by the user-programmer. This will affect programming time and I/O
utilization.

Suitability of Software Memory Protection Scheme

There must be some recognition of memory protection fea-
tures within the computing system proposed. Many systems provide
software schemes with a minimum of hardware features which together
provide an adequate memory protection scheme. Is there a software
implemented scheme for memory protection? Does it provide for both

78

program and data protection separately? How many distinct areas of
each type can be protected at one time? This feature will affect
programming and secondary storage as well as simultaneity.

Use of Parity Checking Technique1

Is there a parity checking technique used for error recog-
nition? On what components? This will affect execution time and I/O
utilization.

Calculations for Tape Redundancy

Does the operating system execute tape redundancy cal-
culations? Automatically or by user requests? Describe steps required
by the user-programmer in order to utilize these calculations. This
will affect execution time and I/O utilization.

Use of One Processor for Error Detection

Is one computing module used strictly for error detection?
Is that program part of the operating system? Is communication pro-
vided by the operating system between this program and the operator?
This will affect execution time and operator intervention.

Maintenance of Error Frequency Counts

Does the operating system maintain a list or table of
counts of error frequencies? Is this table continually assessed by
the operating system to determine certain threshold limits beyond
which component usage must be aborted? This will affect execution
and I/O utilization.

DOCUMENTATION

Availability of Descriptive Manuals

Different vendors provide manuals concerning their com-
puting systems in different ways. One vendor may organize all of his
manuals such that each software item has a section oriented to training
as well as one oriented to reference material. Others may have writ-
ten separate manuals for training, for reference, for internal structure
and for system maintenance. The following documentary material may be
required by the user and if so, it may be found in a manual with the
same title or in a manual oriented differently and therefore have some
related but different title.

1. Introduction to Operating System

79

2. Operating System User's Manual
3. Error Message Explanations and Recovery Procedures
4. Operating System Maintenance Manual
5. Internal Structure of Operating System
6. Programmer's Reference Manual for Operating System
7. System Training Manuals
8. Library and Utility Routines
9. Maintenance pf Program and Routines Library

10. Others?

Listing Produced by the Operating System

Most all of the listings produced by executive or operating
systems provide a measureable degree of documentation for the instal-
lation. These listings assist programmers and analysts in checking
out programs, and maintaining programs as well as providing a record
of the results of runs made on the computing system. The following
items, if needed by the user, may be found in one complete listing or
in one of several different listings but should be presented in a con-
sistent manner such that reconstruction of events occurring during
program execution are easy for the programmer or analyst.

1. Programming Errors Detected
2. Machine Errors Detected
3. Events Occurring Relative to Operating System Functions

or Events
4. Names of Jobs, Programs or Tasks which were Compiled

or Executed with Relevant Clock Times
5. Time Accounting for Hardware Components Relative to

User Jobs
6. Manual Operator Instructions
7. Table of I/O Devices and What Jobs are Using Them
8. Others?

80

SECTION V

QUESTIONNAIRE

INTRODUCTION

The questionnaire contained in this report has been designed to
assist evaluators. The totality of items constitutes a composite of
questions concerning characteristics or functions which are of special
interest when performing comparative analysis of software systems de-
signed and built for a variety of computing systems. In any particular
EDP application, an evaluator would select questions which are oriented
toward features of particular interest to the application or installa-
tion being considered. This subset of questions would then be included
in the specifications or requests for proposal sent to computer manu-
facturers. Part of each proposal would contain a suitable set of
appropriate answers, explanations or further descriptions concerning
only those features of particular interest. Next, evaluators would
compare each vendor's answers with the known requirements in order to
place a specific value judgement on each feature, each grouping of
features or on the general category of operating, executive or monitor
systems.

RESPONDENT'S NOTE

In some cases, a simple "yes" or "no" will be sufficient for an
answer, but explanation or further description should be provided
whenever necessary for an accurate and complete understanding. It is
expected that any explanations supplied would require less than a few
hundred words although a few special cases may need more.

Appropriate references should be indicated with answers, whenever
necessary, and a copy of the referenced document (or its complete
description) should be submitted.

FUNCTIONAL DIVISIONS

Job and/or Task Scheduling

1. Does the framework provide for Compilation, Assembling,
Loading, and Execution options as well as appropriate
combinations?

81

2. What provisions have been made for program execution using
test data?

3. Has a test data generator been provided? What steps must
be taken by the programmer to use it? Can it be called
during problem program execution?

4. What features are available to insure a fast and smooth
transition from job to job?

5. Is there a facility for executing several jobs serially
without requiring stops in between jobs? Can the com-
puting system be set up for future serial type jobs by
the operator while the system is in operation?

6. Is there a facility for operating and executing several
jobs in parallel including both I/O and computation?
Can operator setup for parallel operation of several
jobs be performed simply? How is continuous operation
maintained?

7. Is the reentrant coding technique used within the pro-
gramming system components (i.e. such that multiple
requests will require only one program copy in primary
storage)?

8. Can the decision be made dynamically as to which program
segment will be executed next?

9. What provisions are available for execution of programs,
segments or subroutines originally written for other
installations?

10. What techniques are available for altering program para-
meters while maintaining continuous program-to-program
transition?

11. Can decisions be made dynamically as to which debugging
component to use as well as allowing modifications to
debugging parameters?

12. Can computational tasks, subroutines or segments be
executed in parallel if they belong to different jobs?

13. Can a single job execute tasks in parallel (including
computation) within the software system?

82

14. What limitations prevail relevant to buffering input/
output operations in parallel within a single job?
Among several jobs?

15. Is there a provision for executive control of common
subroutines?

16. What software modifications are required when additional
central processing units (CPU) are added to the system?
How many may be added with only minor modifications
such as changing numbers in a table?

17. Are provisions available for allocation and control of
temporary storage for each CPU? Up to how many?

18. Does the operating system monitor and control I/O re-
quests by timed interrupts? For jobs? For programs?
For tasks?

19. Is control and monitoring of I/O data transfers pro-
vided? What is required of the user-programmer?

20. Can the user request and obtain partial compilations
of internal tasks dynamically? How flexible is this
feature?

21. How much of the selection and manipulation of library
program requests are performed automatically by the
system? What is the programmer required to do?

22. Is there a provision in the operating system for
scheduling the user's own library of programs?

23. What is the scheme for assigning priorities? Does
the system control and monitor jobs and tasks for in-
ternal (programming system) and external (user) pri-
orities? What is the difference between the limits of
system and user priorities?

24. What facility is available for insuring that low priority
programs get executed (e.g. periodic increases in pri-
ority for unexecuted jobs)?

25. Is rescheduling performed for high priority jobs?
Automatically? Can a low priority job delay a high
priority one? For how long?

83

26. What flexibility exists for system reorganization under
future changes in the high priority scheme?

27. Does the operating system check for appropriate identi-
fication of programs? Of associated data and data
segments?

28. Is there sufficient internal system identification of
jobs, programs and tasks, and their priorities to in-
sure proper completion of priority programs?

29. Are job, program and/or task queuing tables used?

30. Is the structure of the queuing tables sufficiently
uncomplicated to allow efficient restart or path re-
construction after system failures?

31. Are these queuing tables maintained dynamically to
continuously reflect the true system status?

32. Does the priority scheme provide sufficient flexibility
and complexity for the user's needs? Describe.

I/O Allocation, Monitoring and Control

1. Are equipment delays for input/output processing con-
trolled and initiated by the operating system. Describe
the steps taken by the user.

2. Does the operating system provide continuous monitoring
of interrupts on user's I/O?

3. Is the complexity of I/O handling considerably reduced
(for the user) by the operating system?

4. Does the reduced complexity provide adequate flexibility
in I/O device usage for the user?

5. Does the framework for I/O manipulation provide for
future addition of standard I/O equipment?

6. Is the framework for I/O manipulation sufficiently
flexible to allow for future changes in channel assign-
ments?

84

7. Does the operating system framework provide for the
possibility of future addition of special I/O equipment
not initially required?

8. What provisions within the operating system are available
for the future addition of external communication equip-
ment?

9. Is the assignment of buffer areas for I/O transfers
flexible enough to take advantage of future hardware
changes on standard I/O equipment such as data transfer
speed increases or increased device storage capacities?

10. Will the operating system internal structure allow for
future increases of simultaneous I/O channels?

11. Will decreases in I/O channel simultaneity make the
operating system overly cumbersome?

12. Is I/O symbolically assigned? If so, is the scheme
adequate for the user's need?

13. Is the scheme for symbolic I/O assignments sufficiently
flexible to allow for future additions of new and
different types of I/O equipment?

14. Does the operating system provide for continuous moni-
toring of the entire computing system configuration?
How?

15. Does this scheme allow controlling and updating of
each I/O device or is it limited to channels?

16. Does the operating system provide for allocation and
control of scratch tapes, temporary storage areas and
input/output data areas?

17. How is the algorithm for scheduling equipment usage
suitable for the user's needs? Can it be modified
easily?

18. Is the internal structure adequate for effecting the
efficient transition of program-to-program I/O?

19. Does the system provide flexibility in allocation and
control of I/O channels?

85

20. Does the symbolic I/O assignment scheme allow allocation
of the actual input/output device or is it limited to
channel assignment?

21. Is continuous monitoring and control of remote console
devices provided?

22. Does the operating system store program, data and/or
message queues from remote console devices?

23. How complicated are the changes required for future
remote console device additions? Up to what limits?

User and System Storage Allocation

1. Is there a technique for segmenting programs? Describe
it briefly.

2. Does the operating system monitor and control the
manipulation and activation of overlays?

3. What computing system storage devices in the proposed
configuration are included in the segmentation scheme?
Which ones are not?

4. What facilities are available for protecting the user's
data segments and/or program segments? Describe these
for both primary and secondary storage.

5. What portions of the relocatability technique are per-
formed at assembly time? At program loading time? By
the operating system?

6. Are there provisions for furnishing debugging output
with the actual memory locations used by each instruction
during execution?

7. What pre-execution steps must be taken to insure com-
plete reconstruction of program paths during debugging
operations?

8. Is the requesting and returning of storage areas per-
formed easily by the user program?

9. What steps are needed for requesting and returning of
storage areas?

86

10. Is the map of primary storage and table of user assign-
ments readily available to the user-programmer?

11. Can existing tables and arrays of data be suitably re-
located for high priority programs? How does each user
program know where his data is during execution? During
debugging?

12. What effects do priority programs have on program seg-
mentation?

13. What internal communication switches or tables are
effected by priority requests?

14. Does the operating system manipulate and control the
transfer of job segments to and from secondary storage?

15. What flexibilities are afforded the user of the segmen-
tation technique? Describe briefly.

16. Is the segmentation technique similar to and compatible
with the technique used for library routine manipulation?

17. Does I/O assignment by the operating system include
buffer area determination?

18. Are buffer areas reassigned when the number of programs
increases? When the load gets lighter?

19. Can the user effect buffer area assignment if needed?

20. What effect does the changing of buffer area require-
ments have on the allocation scheme?

21. Is the allocation scheme flexible enough to take advan-
tage of hardware configuration changes such as the
addition or deletion of memory modules? More secondary
storage?

22. Can the buffer area assignment scheme be easily modi-
fied to take advantage of increased I/O equipment?
Decreased?

23. Does the operating system provide initial system status
setup for jobs, programs and/or tasks?

87

24. Are specific I/O components initialized or put on
ready status by the operating system (e.g. tape label
checking, deleting identification records, selecting
proper operating modes, etc.)?

25. Can a mix of foreground and background programs be
executed? Describe the limitations briefly.

26. Can appropriate combinations of debugging operations
be selected to handle predicted checkout needs?

27. Are the debugging operation commands adequate to pro-
vide requests for snapshots, partial dumps, segment
dumps, traces and intermediate results?

28. Does the operating system monitor and allocate storage
for snapshots, partial dumps, segment dumps, traces and
intermediate results?

Library Manipulation and Maintenance

1. Are the library routines stored and retrieved the same
way the compilers or assemblers are? Describe the
differences briefly and what effects they have on the
user.

2. What specific flexibilities are provided in the frame-
work of the operating system which allow for easy
access to library routines?

3. Is the structure sufficiently flexible to provide for
calling library routines during compilation? Execution.'
Both?

4. What is the method used for linking user programs with
library routines? With compilers or assemblers? Both?

5. What is required of the user programs to effect this
linkage?

6. Are the library routines automatically read in and
incorporated into the user's program? If not, what
must the user do?

80

7. Are appropriate linkages set up by the system so that
more than one request for the same library routine will
produce only one copy in the requested program? If
not, why not?

8. What library routines need separate data arrays or
tables? For each, describe how these items must be
provided. By whom?

9. Are there any requirements for control or monitoring on
any of the library routines? Who performs the moni-
toring in each case? What effect does this have on the
user program?

10. Is there a standard scheme for control transfer between
the library routines and the operating system? Describe
it briefly.

11. What requirements are placed on the user for effecting
program segmentation of library routines?

12. Does the system provide linkage substitution in case
library routines require program segmentation?

13. What provisions are included for allowing the mainten-
ance and updating of library routines? Can user pro-
grams do it easily?

14. In case a new library routine fails in some way, what
procedure must be performed to replace it with the old
one or effect a suitable modification? Can this be
done on-line? In either case, how is continuous sys-
tem operation affected?

15. Are there any special features available for maintaining
operational reliability of library routines?

16. Can library maintenance jobs, programs or tasks be
submitted to the operating system as any normal user
program? If so, what scheme or technique is used to
insure a program obtaining the desired library routine
version? If not, what special actions or special
operating systems are needed? Why?

17. Does the operating system include the utility routines
needed to both manipulate and maintain the system
lib*- .ry? If not, what is needed?

89

Editing of User and System Programs

1. What listings are provided for post analysis by user
programmers?

2. Are the messages produced by the operating system ori-
ented toward distinct and well defined events so that
accurate reconstruction may be performed?

3. Are the operating system output messages saved and
combined so that the programmer may see what happened
without having compilation, library routine or user
program output interspersed?

4. Does the output message consist of a description? Is
it complete within itself or is further description
needed from an associated document?

5. Does the output message consist of a number which refers
to a description in some associated document?

6. Is there an organized scheme within the software system
concerning the production of the message descriptions
so that each term has a distinct meaning?

7. Does the list of output messages include a facility for
notifying the operator immediately when an on-line cor-
rection may be made instead of aborting a program?

8. What provisions are available for making machine language
patches?

9. Does the output message listing contain sufficient in-
formation within itself to adequately reconstruct the
program path? If not, what else is needed?

10. Does the operating system provide and effect code sub-
stitution suitable for all available debugging schemes?

11. Are provisions available for making compilations with
or without debugging aids? What modifications are re-
quired by the user to delete debugging aids from a
program?

12. Is a contiguous listing of machine errors provided?

90

13. Are there any provisions for monitoring and editing of
out-of-range quantities during debugging?

14. Are arithmetic violations detected and recorded during
program execution? During debugging?

Facility and User Time Accounting

1. Does the operating system perform monitoring of job
timing for both user and facility?

2. Is a table maintained of timing information for each
hardware component on the computing system? If not,
is one maintained for any of the components? Which

Is there a framework in the operating system which
allows for generation and accumulation of statistics
concerning system bookkeeping?

Can any of the following bookkeeping statistics be
accumulated? Others? Describe each briefly.

a) Number of secondary storage transfers made.
b) Number of storage accesses for each secondary

storage device.
c) Number of jobs, programs and/or tasks executed.
d) Frequency of usage of library and/or utility

routines.
e) I/O channel time usage.
f) Timed usage of each I/O device.

Does execution of job abortive procedures include suf-
ficient data to determine exactly what happened?
Describe briefly.

Is there a means for continuously maintaining the
status of each computing system component? Accessible
by the user program?

Does the scheme for maintaining component status and
timing recognize and reflect the sharing of components
by jobs, programs or tasks?

Is TP operations log maintained?

91

9. If so, are there sufficient items contained in it to
fulfill management requirements such as contained in
question 4. above?

10. Does the log contain sufficient information to facilitate
predicting future estimates of configuration changes
such as increases or decreases in numbers of I/O devi-
ces or channels?

11. Is a separate timed record provided for each major
component of the component system? Describe each
different method briefly.

12. If no individual component timing is performed, are
there sufficient details maintained in the operating
system for future addition of this capability?

Generating and Updating the Master System

1. What features are available so that individual utility
programs may be modified or added easily?

2. Is the organization of the master system sufficiently
flexible so that new master tapes may be made up with
individual programs contained in a completely different
sequence?

3. Does the system provide for easy updating and mainten-
ance of compilers and assemblers by system programmers?

4. Are provisions available for maintaining and updating
user's files or file systems?

5. Are directories of files or file systems maintained by
the operating system?

6. Does the framework of the files or file system mainten-
ance allow for easy access to these files during exe-
cution? During compilation? By other appropriate
major software components?

Operator and Off-Line Communication

1. At the interface between the operating system and the
off-line computer(s), are the commands organized and
suitable for efficient data transfers?

92

2. Is similar terminology used in communication by both
the on-line operating system and the off-line computing
system(s)?

3. Does either system require unnecessary data conversions?
Is there a standard data format?

4. Are the commands used between systems standard ones?
Describe briefly.

5. Is there a provision for communicating with other on-
line computers or other computer modules in this system?

6. Is the communication scheme used sufficiently open-
ended to provide for future additions of computer
modules, on-line computers or off-line computers?

7. Is there sufficient flexibility to allow for changes in
the configuration of either computing system?

8. Has a master-slave relationship for control and communi-
cation been established between the on-line operating
system and any subsystem monitors?

9. Does the operating system generate commands for the
manual operation functions?

10. Are these commands communicated to a central console?

11. Can the operator request or provide answers to the
operating system through a central console?

12. Does the operator have access to an updated record of
I/O device assignments?

Error Recognition and Recovery

1. Does the operating system provide for continued opera-
tion when limited failures occur on components not
currently being used by this job? To what extent can
this occur?

2. Does the operating system automatically substitute a
similar unused I/O device for one which has failed?
Is svstem operation interrupted during this switch?

93

3. Are errors identified relative to the individual com-
ponent or device that failed?

4. Are programming errors detected during program execution?
If so, identify each as to one of the following types:

a) Incorrect instructions or formats.
b) Unstable iterative or nonconvergent processes
c) Incorrect I/O requests.
d) Requests for equipment all eady in use.
e) Arithmetic violations or data overflows.
f) Incorrect data formats.
g) Software system violations,
h) Others?

5. Does the operating system have a capability of re-
starting the system after an equipment failure has
occurred, without completely rerunning the last batch
of jobs? Describe briefly.

6. If the system provides periodic storage dumps as a
method of easy recovery, what is the period? What
happens when failure occurs during data transfer of
this storage dump?

7. What amount of primary and secondary storage is required
to utilize this dumping procedure?

8. What specific violations of hardware limits (such as
magnetic tape, running off the reel) are monitored by
the operating system?

9. Is there a software implemented scheme for memory pro-
tection? Does it provide for both program and data
protection separately? How many distinct areas of each
type can be protected at one time?

10. Is there a parity checking technique used for error
recognition? On what components?

11. Does the operating system execute tape redundancy cal-
culations? Automatically or by user request?

12. Is one computing module used strictly for error detection?
Is that program part of the operating system? Is com-
munication provided by the operating system between this
program and the operator?

94

13. Does the operating system maintain counts of error
frequencies?

Documentation

1. Which of the following descriptive manuals are currently
available:

Introduction to Operating System
Operating System User's Manual
Error Message Explanations and Recovery Procedures
Operating System Maintenance Manual
Internal Structure of Operating System
Programmer's Reference Manual for Operating System
System Training Manuals
Library and Utility Routines
Maintenance of Program and Routines Library
Others?

2. Which of the following computer output listings are
currently produced by the operating systems:

a) Programming Errors Detected
b) Machine Errors Detected
c) Events Occurring Relative to Operating System

Functions or Events
d) Names of Jobs, Programs or Tasks which were Com-

piled or Executed with Relevant Clock Times
e) Time Accounting for Hardware Components Relative

to User Jobs
f) Manual Operator Instructions
g) Table of I/O Devices and What Jobs are Using Them
h) Others?

95

Unr.lasflififlrt
Security Classification

DOCUMENT CONTROL DATA -R&D
(Security classification of title, body of abstract and indexing annotation must he entered when the overall report In classified)

1 ORIGINATING ACTIVITY (Corporate author)

The MITRE Corporation
Bedford, Massachusetts

2a. REPORT SECURITY CLASSIFICATION

Unclassified
2b. GROUP

3 REPORT TITLE

A Method for the Evaluation of Software: Executive, Operating or Monitor Systems

4 OFSC RlPTl V E NOTES (Type of report and inclusive dates)

N/A
5 AuTHORlS) (First name, middle initial, laat name)

Budd, Arthur E.

6. REPORT DATE

September 1967
7a. TOTAL NO. OF PAGES

100
7b. NO. OF REFS

0
8a. CONTRACT OR GRANT NO.

AF 19(628)-5165
b. PROJ EC T NO.

8510

9a. ORIGINATOR'S REPORT NUMBER(S)

ESD-TR-66-113, Vol. 3

9fc. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

MTR-197, Vol. 3

10 DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY EDP Equipment Of-
fice, Electronic Systems Division, L. G. Han-
scom Field, Bedford, Massachusetts

I 3 ABSTRAC T

This report contains features of executive, operating or monitor systems considered
important for evaluation and comparative analysis. These features are identified in a form
expressly for inclusion in the Three Step Method for Software Evaluation (Volume 1 of this
series) under Category TWO: Executive, Operating or Monitor Systems. Included in this
volume is a composite list of functions contained in current executive systems. These func-
tions provide the basis for a standard approach to the software category of executive systems
particularly needed for evaluation and comparative analysis.

DD,FN0oR
v

M,51473 Unclassified
Security Classification

Unclassified
Security Classification

KEY wo RDS

Electronic Data Processing
Executive Systems
Monitor Systems
Operating Systems
Software Evaluation

Unclassified
Security Classification

